Jiang He, Jian-Chao Sun, Yong-Wei Dong, Bo-Bing Wu, Shi-Jie Zheng, Lu Li, Jiang-Tao Liu, Xin Liu, Hao-Li Shi, Li-Ming Song, Rui-Jie Wang, Juan Zhang, Li Zhang, Shuang-Nan Zhang, Xiao-Yun Zhao, Xing-Guang Liu
{"title":"som - grm触发器性能研究和验证","authors":"Jiang He, Jian-Chao Sun, Yong-Wei Dong, Bo-Bing Wu, Shi-Jie Zheng, Lu Li, Jiang-Tao Liu, Xin Liu, Hao-Li Shi, Li-Ming Song, Rui-Jie Wang, Juan Zhang, Li Zhang, Shuang-Nan Zhang, Xiao-Yun Zhao, Xing-Guang Liu","doi":"10.1007/s10686-025-09983-x","DOIUrl":null,"url":null,"abstract":"<div><p>The Space-based multi-band astronomical Variable Objects Monitor (SVOM) is a collaborative satellite developed by China and France, specifically designed for observing and studying Gamma-Ray Bursts (GRBs) as well as other variable sources. Among its four on-board payloads, the Gamma-Ray Monitor (GRM) is responsible for detecting high-energy photons ranging from 15 keV to 5 MeV, equipped with real-time triggering and localization capabilities. In this paper, we primarily focus on investigating the triggering performance of GRM. Firstly, the energy response matrix of each detector is obtained by using the Geant4 simulation toolkit. Based on the results of background simulations and given samples of GRB, the instrument’s sensitivity and the detection efficiency to GRBs from different directions are estimated. The results demonstrate that GRM exhibits superior sensitivity to GRBs with harder energy spectrum, enabling more than <span>\\(80\\%\\)</span> of the GRBs to be triggered within its field of view. By considering satellite orbit and attitude, we conduct a 3-year simulation of GRB observations which reveals that approximately 106 GRBs can be detected annually in the energy range of 50-300 keV by GRM. Moreover, it is observed that optimal triggering energy range correlates with the hardness index values of the GRBs. Finally, we discuss the on-orbit triggering algorithm that has been implemented by GRM along with developing a ground-based multi-timescale search algorithm for identifying potential GRB events. Our work contributes to understanding the on-orbit triggering performance characteristics demonstrated by GRM, while also providing a benchmark for refining ground-based strategies focused on detecting new instances of GRBs, thus amplifying the scientific output obtained from utilizing GRM’s capabilities.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SVOM-GRM trigger performance study and verification\",\"authors\":\"Jiang He, Jian-Chao Sun, Yong-Wei Dong, Bo-Bing Wu, Shi-Jie Zheng, Lu Li, Jiang-Tao Liu, Xin Liu, Hao-Li Shi, Li-Ming Song, Rui-Jie Wang, Juan Zhang, Li Zhang, Shuang-Nan Zhang, Xiao-Yun Zhao, Xing-Guang Liu\",\"doi\":\"10.1007/s10686-025-09983-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Space-based multi-band astronomical Variable Objects Monitor (SVOM) is a collaborative satellite developed by China and France, specifically designed for observing and studying Gamma-Ray Bursts (GRBs) as well as other variable sources. Among its four on-board payloads, the Gamma-Ray Monitor (GRM) is responsible for detecting high-energy photons ranging from 15 keV to 5 MeV, equipped with real-time triggering and localization capabilities. In this paper, we primarily focus on investigating the triggering performance of GRM. Firstly, the energy response matrix of each detector is obtained by using the Geant4 simulation toolkit. Based on the results of background simulations and given samples of GRB, the instrument’s sensitivity and the detection efficiency to GRBs from different directions are estimated. The results demonstrate that GRM exhibits superior sensitivity to GRBs with harder energy spectrum, enabling more than <span>\\\\(80\\\\%\\\\)</span> of the GRBs to be triggered within its field of view. By considering satellite orbit and attitude, we conduct a 3-year simulation of GRB observations which reveals that approximately 106 GRBs can be detected annually in the energy range of 50-300 keV by GRM. Moreover, it is observed that optimal triggering energy range correlates with the hardness index values of the GRBs. Finally, we discuss the on-orbit triggering algorithm that has been implemented by GRM along with developing a ground-based multi-timescale search algorithm for identifying potential GRB events. Our work contributes to understanding the on-orbit triggering performance characteristics demonstrated by GRM, while also providing a benchmark for refining ground-based strategies focused on detecting new instances of GRBs, thus amplifying the scientific output obtained from utilizing GRM’s capabilities.</p></div>\",\"PeriodicalId\":551,\"journal\":{\"name\":\"Experimental Astronomy\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10686-025-09983-x\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-025-09983-x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
SVOM-GRM trigger performance study and verification
The Space-based multi-band astronomical Variable Objects Monitor (SVOM) is a collaborative satellite developed by China and France, specifically designed for observing and studying Gamma-Ray Bursts (GRBs) as well as other variable sources. Among its four on-board payloads, the Gamma-Ray Monitor (GRM) is responsible for detecting high-energy photons ranging from 15 keV to 5 MeV, equipped with real-time triggering and localization capabilities. In this paper, we primarily focus on investigating the triggering performance of GRM. Firstly, the energy response matrix of each detector is obtained by using the Geant4 simulation toolkit. Based on the results of background simulations and given samples of GRB, the instrument’s sensitivity and the detection efficiency to GRBs from different directions are estimated. The results demonstrate that GRM exhibits superior sensitivity to GRBs with harder energy spectrum, enabling more than \(80\%\) of the GRBs to be triggered within its field of view. By considering satellite orbit and attitude, we conduct a 3-year simulation of GRB observations which reveals that approximately 106 GRBs can be detected annually in the energy range of 50-300 keV by GRM. Moreover, it is observed that optimal triggering energy range correlates with the hardness index values of the GRBs. Finally, we discuss the on-orbit triggering algorithm that has been implemented by GRM along with developing a ground-based multi-timescale search algorithm for identifying potential GRB events. Our work contributes to understanding the on-orbit triggering performance characteristics demonstrated by GRM, while also providing a benchmark for refining ground-based strategies focused on detecting new instances of GRBs, thus amplifying the scientific output obtained from utilizing GRM’s capabilities.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.