{"title":"利用可学习过滤器增强知识跟踪","authors":"Fulan Qian;Yetong Hu;Guangyao Li;Jie Chen;Shijin Wang;Shu Zhao","doi":"10.1109/TCSS.2024.3452130","DOIUrl":null,"url":null,"abstract":"The primary objective of knowledge tracing (KT) is to evaluate students’ understanding and mastery of knowledge through their responses to exercises, which aids in predicting their future performance. Deep neural networks have been widely applied in the area of knowledge tracing and have demonstrated encouraging results. Nevertheless, in real-world scenarios, there is a substantial amount of noise in students’ response records. These noises may amplify the inherent risk of overfitting in deep neural networks, leading to a decrease in model performance. To address these issues, we introduce a new model called filter knowledge tracing (FKT). This innovative model incorporates a learnable filter into KT to filter out noise information from students’ exercise sequences. We redefine the input paradigm of the data, using learnable filters to perform filtering operations in its frequency domain representation space, effectively removing noise. Additionally, an attention module has been introduced in the FKT model to evaluate the impact of students’ historical interactions on their current knowledge state. To validate our model, we conduct extensive experiments utilizing four publicly available datasets. The results demonstrate that FKT outperforms existing benchmarks, particularly on larger datasets, signifying an improvement in KT performance while effectively reducing the risk of overfitting.","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"12 1","pages":"198-209"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Knowledge Tracing With Learnable Filter\",\"authors\":\"Fulan Qian;Yetong Hu;Guangyao Li;Jie Chen;Shijin Wang;Shu Zhao\",\"doi\":\"10.1109/TCSS.2024.3452130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary objective of knowledge tracing (KT) is to evaluate students’ understanding and mastery of knowledge through their responses to exercises, which aids in predicting their future performance. Deep neural networks have been widely applied in the area of knowledge tracing and have demonstrated encouraging results. Nevertheless, in real-world scenarios, there is a substantial amount of noise in students’ response records. These noises may amplify the inherent risk of overfitting in deep neural networks, leading to a decrease in model performance. To address these issues, we introduce a new model called filter knowledge tracing (FKT). This innovative model incorporates a learnable filter into KT to filter out noise information from students’ exercise sequences. We redefine the input paradigm of the data, using learnable filters to perform filtering operations in its frequency domain representation space, effectively removing noise. Additionally, an attention module has been introduced in the FKT model to evaluate the impact of students’ historical interactions on their current knowledge state. To validate our model, we conduct extensive experiments utilizing four publicly available datasets. The results demonstrate that FKT outperforms existing benchmarks, particularly on larger datasets, signifying an improvement in KT performance while effectively reducing the risk of overfitting.\",\"PeriodicalId\":13044,\"journal\":{\"name\":\"IEEE Transactions on Computational Social Systems\",\"volume\":\"12 1\",\"pages\":\"198-209\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computational Social Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10701610/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Social Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10701610/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
The primary objective of knowledge tracing (KT) is to evaluate students’ understanding and mastery of knowledge through their responses to exercises, which aids in predicting their future performance. Deep neural networks have been widely applied in the area of knowledge tracing and have demonstrated encouraging results. Nevertheless, in real-world scenarios, there is a substantial amount of noise in students’ response records. These noises may amplify the inherent risk of overfitting in deep neural networks, leading to a decrease in model performance. To address these issues, we introduce a new model called filter knowledge tracing (FKT). This innovative model incorporates a learnable filter into KT to filter out noise information from students’ exercise sequences. We redefine the input paradigm of the data, using learnable filters to perform filtering operations in its frequency domain representation space, effectively removing noise. Additionally, an attention module has been introduced in the FKT model to evaluate the impact of students’ historical interactions on their current knowledge state. To validate our model, we conduct extensive experiments utilizing four publicly available datasets. The results demonstrate that FKT outperforms existing benchmarks, particularly on larger datasets, signifying an improvement in KT performance while effectively reducing the risk of overfitting.
期刊介绍:
IEEE Transactions on Computational Social Systems focuses on such topics as modeling, simulation, analysis and understanding of social systems from the quantitative and/or computational perspective. "Systems" include man-man, man-machine and machine-machine organizations and adversarial situations as well as social media structures and their dynamics. More specifically, the proposed transactions publishes articles on modeling the dynamics of social systems, methodologies for incorporating and representing socio-cultural and behavioral aspects in computational modeling, analysis of social system behavior and structure, and paradigms for social systems modeling and simulation. The journal also features articles on social network dynamics, social intelligence and cognition, social systems design and architectures, socio-cultural modeling and representation, and computational behavior modeling, and their applications.