辐射系统的自由度

IF 4.6 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Mats Gustafsson
{"title":"辐射系统的自由度","authors":"Mats Gustafsson","doi":"10.1109/TAP.2024.3524437","DOIUrl":null,"url":null,"abstract":"Electromagnetic degrees of freedom are instrumental in antenna design, wireless communications, imaging, and scattering. A large number of degrees of freedom enhance control in antenna design, influencing radiation patterns and directivity, while in communication systems, it links to spatial channels for increased data rates, reliability, and resolution in imaging. The correlation between computed degrees of freedom and physical quantities is not fully understood, prompting a comparison between classical estimates, Weyl’s law, modal expansions, and optimization techniques. In this article, it is shown that the number of degrees of freedom for arbitrarily shaped radiating structures approaches the shadow area measured in squared wavelengths asymptotically as the wavelength decreases.","PeriodicalId":13102,"journal":{"name":"IEEE Transactions on Antennas and Propagation","volume":"73 2","pages":"1028-1038"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degrees of Freedom for Radiating Systems\",\"authors\":\"Mats Gustafsson\",\"doi\":\"10.1109/TAP.2024.3524437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromagnetic degrees of freedom are instrumental in antenna design, wireless communications, imaging, and scattering. A large number of degrees of freedom enhance control in antenna design, influencing radiation patterns and directivity, while in communication systems, it links to spatial channels for increased data rates, reliability, and resolution in imaging. The correlation between computed degrees of freedom and physical quantities is not fully understood, prompting a comparison between classical estimates, Weyl’s law, modal expansions, and optimization techniques. In this article, it is shown that the number of degrees of freedom for arbitrarily shaped radiating structures approaches the shadow area measured in squared wavelengths asymptotically as the wavelength decreases.\",\"PeriodicalId\":13102,\"journal\":{\"name\":\"IEEE Transactions on Antennas and Propagation\",\"volume\":\"73 2\",\"pages\":\"1028-1038\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Antennas and Propagation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10832471/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10832471/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

电磁自由度在天线设计、无线通信、成像和散射中起着重要作用。大量的自由度加强了对天线设计的控制,影响辐射模式和指向性,而在通信系统中,它与空间信道相连,以提高数据速率、可靠性和成像分辨率。计算自由度和物理量之间的相关性还没有完全被理解,这促使人们在经典估计、Weyl定律、模态展开和优化技术之间进行比较。本文表明,随着波长的减小,任意形状的辐射结构的自由度数逐渐接近以平方波长测量的阴影面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degrees of Freedom for Radiating Systems
Electromagnetic degrees of freedom are instrumental in antenna design, wireless communications, imaging, and scattering. A large number of degrees of freedom enhance control in antenna design, influencing radiation patterns and directivity, while in communication systems, it links to spatial channels for increased data rates, reliability, and resolution in imaging. The correlation between computed degrees of freedom and physical quantities is not fully understood, prompting a comparison between classical estimates, Weyl’s law, modal expansions, and optimization techniques. In this article, it is shown that the number of degrees of freedom for arbitrarily shaped radiating structures approaches the shadow area measured in squared wavelengths asymptotically as the wavelength decreases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.40
自引率
28.10%
发文量
968
审稿时长
4.7 months
期刊介绍: IEEE Transactions on Antennas and Propagation includes theoretical and experimental advances in antennas, including design and development, and in the propagation of electromagnetic waves, including scattering, diffraction, and interaction with continuous media; and applications pertaining to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信