基于深度学习的三维互连部分电感提取

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiaofan Jia;Mingyu Wang;Qiqi Dai;Chao-Fu Wang;Abdulkadir C. Yucel
{"title":"基于深度学习的三维互连部分电感提取","authors":"Xiaofan Jia;Mingyu Wang;Qiqi Dai;Chao-Fu Wang;Abdulkadir C. Yucel","doi":"10.1109/JMMCT.2025.3528484","DOIUrl":null,"url":null,"abstract":"A physics-informed deep learning-based scheme is introduced for computing partial inductances of interconnects. This scheme takes a physics-based skin depth map and a geometry identifier of the interconnects as inputs and provides the current density distribution on the interconnects as the output. The predicted currents are then used to compute the partial self-resistances, self-inductances, and mutual-inductances of the interconnects. The proposed method leverages an Attention U-net, a U-shaped convolutional neural network with attention modules. During the training of Attention U-net, a specifically designed loss function is used to ensure the accurate modeling of the currents on the structure as well as ports. The accuracy, efficiency, and generalization ability of this physics-informed deep learning method are demonstrated via inductance extraction of the interconnects with and without a ground plane, including straight single interconnects, interconnects with sharp bends, parallel interconnects, and multiple conductor crossover buses. Numerical results show that the proposed scheme can predict the current density distribution of one interconnect scenario in 15.63 ms on GPU, 1157x faster than the physics-based solver, while providing self-inductances, mutual-inductances, and self-resistances of interconnects with around 1%, 3%, and 4% <inline-formula><tex-math>${{\\ell }_2}$</tex-math></inline-formula>-norm error, respectively.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"10 ","pages":"112-124"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Based Partial Inductance Extraction of 3-D Interconnects\",\"authors\":\"Xiaofan Jia;Mingyu Wang;Qiqi Dai;Chao-Fu Wang;Abdulkadir C. Yucel\",\"doi\":\"10.1109/JMMCT.2025.3528484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A physics-informed deep learning-based scheme is introduced for computing partial inductances of interconnects. This scheme takes a physics-based skin depth map and a geometry identifier of the interconnects as inputs and provides the current density distribution on the interconnects as the output. The predicted currents are then used to compute the partial self-resistances, self-inductances, and mutual-inductances of the interconnects. The proposed method leverages an Attention U-net, a U-shaped convolutional neural network with attention modules. During the training of Attention U-net, a specifically designed loss function is used to ensure the accurate modeling of the currents on the structure as well as ports. The accuracy, efficiency, and generalization ability of this physics-informed deep learning method are demonstrated via inductance extraction of the interconnects with and without a ground plane, including straight single interconnects, interconnects with sharp bends, parallel interconnects, and multiple conductor crossover buses. Numerical results show that the proposed scheme can predict the current density distribution of one interconnect scenario in 15.63 ms on GPU, 1157x faster than the physics-based solver, while providing self-inductances, mutual-inductances, and self-resistances of interconnects with around 1%, 3%, and 4% <inline-formula><tex-math>${{\\\\ell }_2}$</tex-math></inline-formula>-norm error, respectively.\",\"PeriodicalId\":52176,\"journal\":{\"name\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"volume\":\"10 \",\"pages\":\"112-124\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10839010/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10839010/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种基于物理信息的深度学习方案,用于计算互连部分电感。该方案采用基于物理的皮肤深度图和互连的几何标识符作为输入,并提供互连上的电流密度分布作为输出。然后用预测的电流来计算互连的部分自电阻、自感和互感。该方法利用了一个注意力u型网络,一个带有注意力模块的u型卷积神经网络。在Attention U-net的训练过程中,使用了一个专门设计的损失函数来确保结构和端口上电流的准确建模。通过对带地平面和不带地平面的互连的电感提取,包括直单互连、带急弯的互连、并联互连和多导体交叉总线,证明了这种物理信息深度学习方法的准确性、效率和泛化能力。数值结果表明,该方法在GPU上能够在15.63 ms内预测出一个互连场景的电流密度分布,比基于物理的求解器快1157倍,同时提供的互连自感、互感和自电阻分别为1%、3%和4% ${{\ well}_2}$范数误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-Based Partial Inductance Extraction of 3-D Interconnects
A physics-informed deep learning-based scheme is introduced for computing partial inductances of interconnects. This scheme takes a physics-based skin depth map and a geometry identifier of the interconnects as inputs and provides the current density distribution on the interconnects as the output. The predicted currents are then used to compute the partial self-resistances, self-inductances, and mutual-inductances of the interconnects. The proposed method leverages an Attention U-net, a U-shaped convolutional neural network with attention modules. During the training of Attention U-net, a specifically designed loss function is used to ensure the accurate modeling of the currents on the structure as well as ports. The accuracy, efficiency, and generalization ability of this physics-informed deep learning method are demonstrated via inductance extraction of the interconnects with and without a ground plane, including straight single interconnects, interconnects with sharp bends, parallel interconnects, and multiple conductor crossover buses. Numerical results show that the proposed scheme can predict the current density distribution of one interconnect scenario in 15.63 ms on GPU, 1157x faster than the physics-based solver, while providing self-inductances, mutual-inductances, and self-resistances of interconnects with around 1%, 3%, and 4% ${{\ell }_2}$-norm error, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信