非交换诺特问题的推广

IF 0.8 2区 数学 Q2 MATHEMATICS
João Fernando Schwarz
{"title":"非交换诺特问题的推广","authors":"João Fernando Schwarz","doi":"10.1016/j.jpaa.2025.107896","DOIUrl":null,"url":null,"abstract":"<div><div>Noether's problem is a classical and very important problem in algebra. It is an intrinsically interesting problem in invariant theory, but with far reaching applications in the sutdy of moduli spaces, PI-algebras, and the Inverse problem of Galois theory, among others. To obtain a noncommutative analogue of Noether's problem, one would need a significant skew field that shares a role similar to the field of rational functions. Given the importance of the Weyl fields due to Gelfand-Kirillov's Conjecture, in 2006 J. Alev and F. Dumas introduced what is nowadays called the Noncommutative Noether's problem. The aim of this article is to generalize the main result of <span><span>[12]</span></span> for more general versions of Noether's problem; and consider its analogue in prime characteristic.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 2","pages":"Article 107896"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalizations of noncommutative Noether's problem\",\"authors\":\"João Fernando Schwarz\",\"doi\":\"10.1016/j.jpaa.2025.107896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Noether's problem is a classical and very important problem in algebra. It is an intrinsically interesting problem in invariant theory, but with far reaching applications in the sutdy of moduli spaces, PI-algebras, and the Inverse problem of Galois theory, among others. To obtain a noncommutative analogue of Noether's problem, one would need a significant skew field that shares a role similar to the field of rational functions. Given the importance of the Weyl fields due to Gelfand-Kirillov's Conjecture, in 2006 J. Alev and F. Dumas introduced what is nowadays called the Noncommutative Noether's problem. The aim of this article is to generalize the main result of <span><span>[12]</span></span> for more general versions of Noether's problem; and consider its analogue in prime characteristic.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 2\",\"pages\":\"Article 107896\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925000350\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000350","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

诺特问题是代数中一个经典而又重要的问题。它本质上是不变理论中一个有趣的问题,但在模空间、pi代数和伽罗瓦理论的逆问题等的研究中有着深远的应用。为了得到Noether问题的非交换类比,我们需要一个重要的歪斜场,它的作用与有理数函数的场相似。鉴于Gelfand-Kirillov猜想对Weyl场的重要性,在2006年J. Alev和F. Dumas引入了现在所谓的非交换诺特问题。本文的目的是将[12]的主要结果推广到Noether问题的更一般版本;并考虑其素数特性的类似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalizations of noncommutative Noether's problem
Noether's problem is a classical and very important problem in algebra. It is an intrinsically interesting problem in invariant theory, but with far reaching applications in the sutdy of moduli spaces, PI-algebras, and the Inverse problem of Galois theory, among others. To obtain a noncommutative analogue of Noether's problem, one would need a significant skew field that shares a role similar to the field of rational functions. Given the importance of the Weyl fields due to Gelfand-Kirillov's Conjecture, in 2006 J. Alev and F. Dumas introduced what is nowadays called the Noncommutative Noether's problem. The aim of this article is to generalize the main result of [12] for more general versions of Noether's problem; and consider its analogue in prime characteristic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信