揭示氧化铁纳米颗粒的多功能性:一个协同的实验和计算研究

IF 4.3 Q2 CHEMISTRY, PHYSICAL
Shiva Sharma , Sudheesh K. Shukla , Krishna K. Govender , Penny P. Govender
{"title":"揭示氧化铁纳米颗粒的多功能性:一个协同的实验和计算研究","authors":"Shiva Sharma ,&nbsp;Sudheesh K. Shukla ,&nbsp;Krishna K. Govender ,&nbsp;Penny P. Govender","doi":"10.1016/j.chphi.2025.100845","DOIUrl":null,"url":null,"abstract":"<div><div>Iron oxide nanoparticles (IONPs) are known for their multifunctionality in diverse biomedical, environmental, and catalytic areas, controlled by their size, shape, phase, and surface properties. Thermal decomposition, sol-gel, co-precipitation, hydrothermal techniques, and green synthesis are the different ways to synthesize IONPs. These techniques offer control over size, morphology, and phase, which influences the intrinsic properties of the IONPs. Surface functionalization with ligands or polymers played another important role in improving the physicochemical properties, environmental application, and biological interactions of IONPs. Experimental and computational approaches can be used to evaluate these characteristics and perform controlled reactions. In this review, we attempt to compile the recent studies on computational methods used to evaluate the intrinsic properties concerning shape, size, structure, and phases, optimized synthesis, functionality of IONPs for drug delivery, biomedical imaging, dye degradation, and water remediation. Integrating advanced computational tools with experimental methods promises new opportunities for designing multifunctional IONPs for specific industrial, medical, and environmental applications. This study highlights how synthesis methods like thermal decomposition, sol-gel, and hydrothermal techniques enable control over IONP size, morphology, and phase. Surface functionalization enhances stability, biocompatibility, and functionality. Computational tools like DFT provide insights into material properties, enabling optimized design for drug delivery, imaging, dye degradation, and water remediation applications.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100845"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the multifunctionality of iron oxide nanoparticle: A synergistic experimental and computational investigation\",\"authors\":\"Shiva Sharma ,&nbsp;Sudheesh K. Shukla ,&nbsp;Krishna K. Govender ,&nbsp;Penny P. Govender\",\"doi\":\"10.1016/j.chphi.2025.100845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Iron oxide nanoparticles (IONPs) are known for their multifunctionality in diverse biomedical, environmental, and catalytic areas, controlled by their size, shape, phase, and surface properties. Thermal decomposition, sol-gel, co-precipitation, hydrothermal techniques, and green synthesis are the different ways to synthesize IONPs. These techniques offer control over size, morphology, and phase, which influences the intrinsic properties of the IONPs. Surface functionalization with ligands or polymers played another important role in improving the physicochemical properties, environmental application, and biological interactions of IONPs. Experimental and computational approaches can be used to evaluate these characteristics and perform controlled reactions. In this review, we attempt to compile the recent studies on computational methods used to evaluate the intrinsic properties concerning shape, size, structure, and phases, optimized synthesis, functionality of IONPs for drug delivery, biomedical imaging, dye degradation, and water remediation. Integrating advanced computational tools with experimental methods promises new opportunities for designing multifunctional IONPs for specific industrial, medical, and environmental applications. This study highlights how synthesis methods like thermal decomposition, sol-gel, and hydrothermal techniques enable control over IONP size, morphology, and phase. Surface functionalization enhances stability, biocompatibility, and functionality. Computational tools like DFT provide insights into material properties, enabling optimized design for drug delivery, imaging, dye degradation, and water remediation applications.</div></div>\",\"PeriodicalId\":9758,\"journal\":{\"name\":\"Chemical Physics Impact\",\"volume\":\"10 \",\"pages\":\"Article 100845\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Impact\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667022425000337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425000337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氧化铁纳米颗粒(IONPs)因其在生物医学、环境和催化领域的多功能性而闻名,受其大小、形状、相和表面性质的控制。热分解法、溶胶-凝胶法、共沉淀法、水热法和绿色合成法是合成离子卟啉的不同方法。这些技术提供了对大小、形态和相位的控制,这些因素会影响离子阱的内在特性。配体或聚合物的表面功能化在改善离子交换体的物理化学性质、环境应用和生物相互作用方面发挥了重要作用。实验和计算方法可以用来评估这些特性和执行控制反应。在这篇综述中,我们试图汇编最近关于计算方法的研究,这些计算方法用于评估IONPs的内在性质,包括形状、大小、结构和相、优化合成、药物传递功能、生物医学成像、染料降解和水修复。将先进的计算工具与实验方法相结合,为设计用于特定工业、医疗和环境应用的多功能离子离子提供了新的机会。这项研究强调了热分解、溶胶-凝胶和水热技术等合成方法如何控制IONP的大小、形态和相。表面功能化增强了稳定性、生物相容性和功能性。像DFT这样的计算工具提供了对材料特性的洞察,使药物输送、成像、染料降解和水修复应用的优化设计成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unveiling the multifunctionality of iron oxide nanoparticle: A synergistic experimental and computational investigation

Unveiling the multifunctionality of iron oxide nanoparticle: A synergistic experimental and computational investigation
Iron oxide nanoparticles (IONPs) are known for their multifunctionality in diverse biomedical, environmental, and catalytic areas, controlled by their size, shape, phase, and surface properties. Thermal decomposition, sol-gel, co-precipitation, hydrothermal techniques, and green synthesis are the different ways to synthesize IONPs. These techniques offer control over size, morphology, and phase, which influences the intrinsic properties of the IONPs. Surface functionalization with ligands or polymers played another important role in improving the physicochemical properties, environmental application, and biological interactions of IONPs. Experimental and computational approaches can be used to evaluate these characteristics and perform controlled reactions. In this review, we attempt to compile the recent studies on computational methods used to evaluate the intrinsic properties concerning shape, size, structure, and phases, optimized synthesis, functionality of IONPs for drug delivery, biomedical imaging, dye degradation, and water remediation. Integrating advanced computational tools with experimental methods promises new opportunities for designing multifunctional IONPs for specific industrial, medical, and environmental applications. This study highlights how synthesis methods like thermal decomposition, sol-gel, and hydrothermal techniques enable control over IONP size, morphology, and phase. Surface functionalization enhances stability, biocompatibility, and functionality. Computational tools like DFT provide insights into material properties, enabling optimized design for drug delivery, imaging, dye degradation, and water remediation applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信