将带动量因子的多通道伴随最小均方算法应用于有源噪声控制

IF 8.9 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Xiaoyi Shen , Yu Guo , Junwei Ji , Dongyuan Shi , Woon-Seng Gan
{"title":"将带动量因子的多通道伴随最小均方算法应用于有源噪声控制","authors":"Xiaoyi Shen ,&nbsp;Yu Guo ,&nbsp;Junwei Ji ,&nbsp;Dongyuan Shi ,&nbsp;Woon-Seng Gan","doi":"10.1016/j.ymssp.2025.112415","DOIUrl":null,"url":null,"abstract":"<div><div>Active noise control (ANC) is extensively utilized to attenuate unwanted environmental noise, creating a more conducive environment for work and daily activities. Traditional approaches face challenges when scaled to larger areas using multi-channel ANC (McANC) due to escalating computational burden and slower convergence speeds as channel numbers increase. To overcome these limitations, we introduce a multi-channel adjoint least mean square algorithm with a momentum factor (Mom-McALMS) designed to achieve optimal control at steady-state while reducing computational demands and accelerating convergence. Furthermore, the theoretical analysis presented in this paper reveals the impact of the step size and momentum factor on the stability of the proposed method. Numerical simulations validate the theoretical findings and the improved noise reduction performance of the proposed Mom-McALMS for both stationary and time-variant noises. Furthermore, real-time experiments conducted on a McANC window validate the effectiveness of Mom-McALMS in attenuating noise and improving convergence speed when dealing with different types of real-world noises.</div></div>","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"228 ","pages":"Article 112415"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-channel adjoint least mean square algorithm with momentum factor applied on active noise control\",\"authors\":\"Xiaoyi Shen ,&nbsp;Yu Guo ,&nbsp;Junwei Ji ,&nbsp;Dongyuan Shi ,&nbsp;Woon-Seng Gan\",\"doi\":\"10.1016/j.ymssp.2025.112415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Active noise control (ANC) is extensively utilized to attenuate unwanted environmental noise, creating a more conducive environment for work and daily activities. Traditional approaches face challenges when scaled to larger areas using multi-channel ANC (McANC) due to escalating computational burden and slower convergence speeds as channel numbers increase. To overcome these limitations, we introduce a multi-channel adjoint least mean square algorithm with a momentum factor (Mom-McALMS) designed to achieve optimal control at steady-state while reducing computational demands and accelerating convergence. Furthermore, the theoretical analysis presented in this paper reveals the impact of the step size and momentum factor on the stability of the proposed method. Numerical simulations validate the theoretical findings and the improved noise reduction performance of the proposed Mom-McALMS for both stationary and time-variant noises. Furthermore, real-time experiments conducted on a McANC window validate the effectiveness of Mom-McALMS in attenuating noise and improving convergence speed when dealing with different types of real-world noises.</div></div>\",\"PeriodicalId\":51124,\"journal\":{\"name\":\"Mechanical Systems and Signal Processing\",\"volume\":\"228 \",\"pages\":\"Article 112415\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanical Systems and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888327025001165\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888327025001165","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

主动噪音管制(ANC)被广泛用于减少不必要的环境噪音,为工作和日常活动创造更有利的环境。传统方法在使用多通道ANC (McANC)扩展到更大的区域时面临挑战,因为随着通道数量的增加,计算负担不断增加,收敛速度也越来越慢。为了克服这些限制,我们引入了一种带有动量因子的多通道伴随最小均方算法(Mom-McALMS),旨在实现稳态下的最优控制,同时减少计算需求并加速收敛。此外,本文的理论分析揭示了步长和动量因子对所提方法稳定性的影响。数值模拟验证了理论研究结果以及所提出的Mom-McALMS对平稳噪声和时变噪声的降噪性能。此外,在McANC窗口上进行的实时实验验证了Mom-McALMS在处理不同类型的真实噪声时具有衰减噪声和提高收敛速度的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-channel adjoint least mean square algorithm with momentum factor applied on active noise control
Active noise control (ANC) is extensively utilized to attenuate unwanted environmental noise, creating a more conducive environment for work and daily activities. Traditional approaches face challenges when scaled to larger areas using multi-channel ANC (McANC) due to escalating computational burden and slower convergence speeds as channel numbers increase. To overcome these limitations, we introduce a multi-channel adjoint least mean square algorithm with a momentum factor (Mom-McALMS) designed to achieve optimal control at steady-state while reducing computational demands and accelerating convergence. Furthermore, the theoretical analysis presented in this paper reveals the impact of the step size and momentum factor on the stability of the proposed method. Numerical simulations validate the theoretical findings and the improved noise reduction performance of the proposed Mom-McALMS for both stationary and time-variant noises. Furthermore, real-time experiments conducted on a McANC window validate the effectiveness of Mom-McALMS in attenuating noise and improving convergence speed when dealing with different types of real-world noises.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanical Systems and Signal Processing
Mechanical Systems and Signal Processing 工程技术-工程:机械
CiteScore
14.80
自引率
13.10%
发文量
1183
审稿时长
5.4 months
期刊介绍: Journal Name: Mechanical Systems and Signal Processing (MSSP) Interdisciplinary Focus: Mechanical, Aerospace, and Civil Engineering Purpose:Reporting scientific advancements of the highest quality Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信