太阳和月球的阴影对宇宙射线各向异性的影响

IF 4.2 3区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Xuan’ang Ye, Yi Zhang, Jiayin He, Shiping Zhao
{"title":"太阳和月球的阴影对宇宙射线各向异性的影响","authors":"Xuan’ang Ye,&nbsp;Yi Zhang,&nbsp;Jiayin He,&nbsp;Shiping Zhao","doi":"10.1016/j.astropartphys.2025.103088","DOIUrl":null,"url":null,"abstract":"<div><div>Large-scale anisotropy, with amplitudes reaching approximately 0.1% at TeV energies, has been observed by multiple cosmic-ray experiments. The obstruction of cosmic rays by the Sun and Moon creates shadow effects, potentially impacting the observed cosmic ray anisotropy. To evaluate these effects, this study calculates the contributions of the Sun’s and Moon’s shadows to the overall cosmic-ray anisotropy in both local solar and sidereal time. The analysis reveals that in local sidereal time, the total 1D projection amplitude of the anisotropy is around 0.003%, which is significantly smaller than the observed cosmic-ray anisotropy. This indicates that the influence of the Sun’s and Moon’s shadows on cosmic-ray anisotropy analysis in local sidereal time is negligible. In contrast, in local solar time, the shadow-induced deficit appears in a very small time bin, with a magnitude comparable to that of the cosmic-ray solar anisotropy. This deficit could serve as a benchmark for validating anisotropy measurements in future facilities.</div></div>","PeriodicalId":55439,"journal":{"name":"Astroparticle Physics","volume":"168 ","pages":"Article 103088"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of Sun’s and Moon’s shadows on cosmic-ray anisotropy\",\"authors\":\"Xuan’ang Ye,&nbsp;Yi Zhang,&nbsp;Jiayin He,&nbsp;Shiping Zhao\",\"doi\":\"10.1016/j.astropartphys.2025.103088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Large-scale anisotropy, with amplitudes reaching approximately 0.1% at TeV energies, has been observed by multiple cosmic-ray experiments. The obstruction of cosmic rays by the Sun and Moon creates shadow effects, potentially impacting the observed cosmic ray anisotropy. To evaluate these effects, this study calculates the contributions of the Sun’s and Moon’s shadows to the overall cosmic-ray anisotropy in both local solar and sidereal time. The analysis reveals that in local sidereal time, the total 1D projection amplitude of the anisotropy is around 0.003%, which is significantly smaller than the observed cosmic-ray anisotropy. This indicates that the influence of the Sun’s and Moon’s shadows on cosmic-ray anisotropy analysis in local sidereal time is negligible. In contrast, in local solar time, the shadow-induced deficit appears in a very small time bin, with a magnitude comparable to that of the cosmic-ray solar anisotropy. This deficit could serve as a benchmark for validating anisotropy measurements in future facilities.</div></div>\",\"PeriodicalId\":55439,\"journal\":{\"name\":\"Astroparticle Physics\",\"volume\":\"168 \",\"pages\":\"Article 103088\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927650525000118\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927650525000118","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

大规模的各向异性,在TeV能量下振幅达到约0.1%,已经被多个宇宙射线实验观察到。太阳和月球对宇宙射线的阻挡产生了阴影效应,潜在地影响了观测到的宇宙射线各向异性。为了评估这些影响,本研究计算了太阳和月球阴影在当地太阳和恒星时间对宇宙射线各向异性的贡献。分析表明,在局地恒星时,各向异性的总1D投影幅值约为0.003%,明显小于观测到的宇宙射线各向异性。这表明太阳和月球的阴影对本恒星时宇宙射线各向异性分析的影响可以忽略不计。相比之下,在当地太阳时,阴影引起的赤字出现在一个非常小的时间仓中,其大小与宇宙射线太阳各向异性相当。这一缺陷可以作为未来设施中验证各向异性测量的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The influence of Sun’s and Moon’s shadows on cosmic-ray anisotropy
Large-scale anisotropy, with amplitudes reaching approximately 0.1% at TeV energies, has been observed by multiple cosmic-ray experiments. The obstruction of cosmic rays by the Sun and Moon creates shadow effects, potentially impacting the observed cosmic ray anisotropy. To evaluate these effects, this study calculates the contributions of the Sun’s and Moon’s shadows to the overall cosmic-ray anisotropy in both local solar and sidereal time. The analysis reveals that in local sidereal time, the total 1D projection amplitude of the anisotropy is around 0.003%, which is significantly smaller than the observed cosmic-ray anisotropy. This indicates that the influence of the Sun’s and Moon’s shadows on cosmic-ray anisotropy analysis in local sidereal time is negligible. In contrast, in local solar time, the shadow-induced deficit appears in a very small time bin, with a magnitude comparable to that of the cosmic-ray solar anisotropy. This deficit could serve as a benchmark for validating anisotropy measurements in future facilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astroparticle Physics
Astroparticle Physics 地学天文-天文与天体物理
CiteScore
8.00
自引率
2.90%
发文量
41
审稿时长
79 days
期刊介绍: Astroparticle Physics publishes experimental and theoretical research papers in the interacting fields of Cosmic Ray Physics, Astronomy and Astrophysics, Cosmology and Particle Physics focusing on new developments in the following areas: High-energy cosmic-ray physics and astrophysics; Particle cosmology; Particle astrophysics; Related astrophysics: supernova, AGN, cosmic abundances, dark matter etc.; Gravitational waves; High-energy, VHE and UHE gamma-ray astronomy; High- and low-energy neutrino astronomy; Instrumentation and detector developments related to the above-mentioned fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信