基于三维LES仿真的双箱式桥面涡激振动分析

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL
A.J. Álvarez, F. Nieto
{"title":"基于三维LES仿真的双箱式桥面涡激振动分析","authors":"A.J. Álvarez,&nbsp;F. Nieto","doi":"10.1016/j.jweia.2025.106015","DOIUrl":null,"url":null,"abstract":"<div><div>Twin-box decks are prone to suffer vortex-induced vibrations (VIV). Although this phenomenon has been widely studied experimentally, there are still gaps in our understanding about the complex interplay between the incoming flow, the windward and leeward boxes, and the potential oscillation of the deck. This work exploits the ability of 3D LES simulations to simulate complex aeroelastic phenomena to delve into the linkage between aerodynamic forcing and heave oscillation through detailed analysis of comprehensive datasets. Several reduced velocities are studied in the VIV-prone range of the bare deck of the Stonecutters Bridge, analysing the spectra of the time-histories of force coefficients, for the overall deck and individual boxes, and heave oscillations. Similarly, the contribution of the local lift coefficient has been studied along with the work done by the deck and the individual boxes at different reduced velocities. It has been found that the leeward box is the one governing the overall VIV response of the deck. The spanwise-averaged time-averaged work distribution around the deck permits the identification of those regions contributing to the heave oscillation build-up, enabling the design of aerodynamic countermeasures for mitigation of VIV tailored for the specific deck geometry and dynamical properties of the deck.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"258 ","pages":"Article 106015"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vortex induced vibration analysis of a twin-box bridge deck by means of 3D LES simulations\",\"authors\":\"A.J. Álvarez,&nbsp;F. Nieto\",\"doi\":\"10.1016/j.jweia.2025.106015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Twin-box decks are prone to suffer vortex-induced vibrations (VIV). Although this phenomenon has been widely studied experimentally, there are still gaps in our understanding about the complex interplay between the incoming flow, the windward and leeward boxes, and the potential oscillation of the deck. This work exploits the ability of 3D LES simulations to simulate complex aeroelastic phenomena to delve into the linkage between aerodynamic forcing and heave oscillation through detailed analysis of comprehensive datasets. Several reduced velocities are studied in the VIV-prone range of the bare deck of the Stonecutters Bridge, analysing the spectra of the time-histories of force coefficients, for the overall deck and individual boxes, and heave oscillations. Similarly, the contribution of the local lift coefficient has been studied along with the work done by the deck and the individual boxes at different reduced velocities. It has been found that the leeward box is the one governing the overall VIV response of the deck. The spanwise-averaged time-averaged work distribution around the deck permits the identification of those regions contributing to the heave oscillation build-up, enabling the design of aerodynamic countermeasures for mitigation of VIV tailored for the specific deck geometry and dynamical properties of the deck.</div></div>\",\"PeriodicalId\":54752,\"journal\":{\"name\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"volume\":\"258 \",\"pages\":\"Article 106015\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016761052500011X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016761052500011X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

双箱甲板容易遭受涡激振动(VIV),尽管这一现象已经得到了广泛的实验研究,但我们对来流、迎风和下风箱以及甲板潜在振荡之间复杂的相互作用的理解仍然存在空白。这项工作利用三维LES模拟的能力来模拟复杂的气动弹性现象,通过对综合数据集的详细分析,深入研究气动力与升沉振荡之间的联系。在昂船洲大桥的裸甲板上,研究了几种减速速度,分析了整个甲板和单个箱子的力系数时程谱,以及升沉振荡。同样地,局部升力系数的贡献也随着甲板和各个箱体在不同减速速度下所做的功而进行了研究。已经发现,下风箱是一个控制甲板的整体振动响应。甲板周围的展向平均时间平均功分布允许识别导致升沉振荡积聚的区域,从而能够根据甲板的特定几何形状和动力特性设计空气动力学对策,以减轻VIV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vortex induced vibration analysis of a twin-box bridge deck by means of 3D LES simulations
Twin-box decks are prone to suffer vortex-induced vibrations (VIV). Although this phenomenon has been widely studied experimentally, there are still gaps in our understanding about the complex interplay between the incoming flow, the windward and leeward boxes, and the potential oscillation of the deck. This work exploits the ability of 3D LES simulations to simulate complex aeroelastic phenomena to delve into the linkage between aerodynamic forcing and heave oscillation through detailed analysis of comprehensive datasets. Several reduced velocities are studied in the VIV-prone range of the bare deck of the Stonecutters Bridge, analysing the spectra of the time-histories of force coefficients, for the overall deck and individual boxes, and heave oscillations. Similarly, the contribution of the local lift coefficient has been studied along with the work done by the deck and the individual boxes at different reduced velocities. It has been found that the leeward box is the one governing the overall VIV response of the deck. The spanwise-averaged time-averaged work distribution around the deck permits the identification of those regions contributing to the heave oscillation build-up, enabling the design of aerodynamic countermeasures for mitigation of VIV tailored for the specific deck geometry and dynamical properties of the deck.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.90
自引率
22.90%
发文量
306
审稿时长
4.4 months
期刊介绍: The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects. Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信