气相氢燃烧化学研究进展与展望

IF 16.3 1区 工程技术 Q1 ENERGY & FUELS
Guoxing Li , Mingbo Niu , Jie Jian , Youjun Lu
{"title":"气相氢燃烧化学研究进展与展望","authors":"Guoxing Li ,&nbsp;Mingbo Niu ,&nbsp;Jie Jian ,&nbsp;Youjun Lu","doi":"10.1016/j.rser.2025.115411","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen is emerging as a clean and renewable energy source indispensable to the realization of a carbon neutral society. Inspired by the prospect of sustainable and carbon-free energy supplies, hydrogen has been widely utilized in various combustion engines. This review article highlights recent progress in understanding hydrogen combustion chemistry in the gas phase. At first, the explosion limits of hydrogen-oxygen mixtures are discussed to demonstrate the intrinsically nonmonotonic kinetic behavior. Fundamental experiments of hydrogen combustion in terms of ignition delay times, laminar flame speeds and speciation are systematically summarized, and the value of the reported data is discussed. Furthermore, effective strategies towards more accurate experimental diagnostics are outlined. The current status of detailed and simplified kinetic model development is then appraised, followed by a critical discussion on the rate constants of important elementary reactions that are still in dispute. The essential importance of the comprehensiveness of chemical fidelity for mechanisms at the detailed and reduced levels is emphasized. Subsequently, the knowledge of ozone-assisted oxidation of hydrogen is overviewed. The effects of ozone addition on the characteristics of hydrogen oxidation are analyzed, including ignition temperature, flame burning velocity and flame structure. The ozone sub-mechanism and associated reaction rates are also carefully assessed. Finally, concluding comments and an outlook towards future research on gas-phase hydrogen combustion chemistry are presented.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"213 ","pages":"Article 115411"},"PeriodicalIF":16.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent progress and prospects of hydrogen combustion chemistry in the gas phase\",\"authors\":\"Guoxing Li ,&nbsp;Mingbo Niu ,&nbsp;Jie Jian ,&nbsp;Youjun Lu\",\"doi\":\"10.1016/j.rser.2025.115411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogen is emerging as a clean and renewable energy source indispensable to the realization of a carbon neutral society. Inspired by the prospect of sustainable and carbon-free energy supplies, hydrogen has been widely utilized in various combustion engines. This review article highlights recent progress in understanding hydrogen combustion chemistry in the gas phase. At first, the explosion limits of hydrogen-oxygen mixtures are discussed to demonstrate the intrinsically nonmonotonic kinetic behavior. Fundamental experiments of hydrogen combustion in terms of ignition delay times, laminar flame speeds and speciation are systematically summarized, and the value of the reported data is discussed. Furthermore, effective strategies towards more accurate experimental diagnostics are outlined. The current status of detailed and simplified kinetic model development is then appraised, followed by a critical discussion on the rate constants of important elementary reactions that are still in dispute. The essential importance of the comprehensiveness of chemical fidelity for mechanisms at the detailed and reduced levels is emphasized. Subsequently, the knowledge of ozone-assisted oxidation of hydrogen is overviewed. The effects of ozone addition on the characteristics of hydrogen oxidation are analyzed, including ignition temperature, flame burning velocity and flame structure. The ozone sub-mechanism and associated reaction rates are also carefully assessed. Finally, concluding comments and an outlook towards future research on gas-phase hydrogen combustion chemistry are presented.</div></div>\",\"PeriodicalId\":418,\"journal\":{\"name\":\"Renewable and Sustainable Energy Reviews\",\"volume\":\"213 \",\"pages\":\"Article 115411\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Reviews\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S136403212500084X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136403212500084X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

氢正在成为实现碳中和社会不可或缺的清洁可再生能源。受可持续和无碳能源供应前景的启发,氢已广泛应用于各种内燃机。这篇综述文章重点介绍了在气相中理解氢燃烧化学的最新进展。首先讨论了氢氧混合物的爆炸极限,以证明其固有的非单调动力学行为。从点火延迟时间、层流火焰速度和形态等方面系统地总结了氢燃烧的基础实验,并讨论了所报道数据的价值。此外,还概述了实现更准确的实验诊断的有效策略。然后评价了详细和简化的动力学模型发展的现状,然后对仍有争议的重要基本反应的速率常数进行了批判性的讨论。强调了在详细和简化的水平上对机制的化学保真度的全面性的根本重要性。随后,概述了臭氧辅助氧化氢的知识。分析了臭氧加入对氢氧化特性的影响,包括着火温度、火焰燃烧速度和火焰结构。还仔细评估了臭氧亚机制和相关的反应速率。最后,对气相氢燃烧化学的研究进行了总结和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent progress and prospects of hydrogen combustion chemistry in the gas phase
Hydrogen is emerging as a clean and renewable energy source indispensable to the realization of a carbon neutral society. Inspired by the prospect of sustainable and carbon-free energy supplies, hydrogen has been widely utilized in various combustion engines. This review article highlights recent progress in understanding hydrogen combustion chemistry in the gas phase. At first, the explosion limits of hydrogen-oxygen mixtures are discussed to demonstrate the intrinsically nonmonotonic kinetic behavior. Fundamental experiments of hydrogen combustion in terms of ignition delay times, laminar flame speeds and speciation are systematically summarized, and the value of the reported data is discussed. Furthermore, effective strategies towards more accurate experimental diagnostics are outlined. The current status of detailed and simplified kinetic model development is then appraised, followed by a critical discussion on the rate constants of important elementary reactions that are still in dispute. The essential importance of the comprehensiveness of chemical fidelity for mechanisms at the detailed and reduced levels is emphasized. Subsequently, the knowledge of ozone-assisted oxidation of hydrogen is overviewed. The effects of ozone addition on the characteristics of hydrogen oxidation are analyzed, including ignition temperature, flame burning velocity and flame structure. The ozone sub-mechanism and associated reaction rates are also carefully assessed. Finally, concluding comments and an outlook towards future research on gas-phase hydrogen combustion chemistry are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Renewable and Sustainable Energy Reviews
Renewable and Sustainable Energy Reviews 工程技术-能源与燃料
CiteScore
31.20
自引率
5.70%
发文量
1055
审稿时长
62 days
期刊介绍: The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change. Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信