Saimur Rahman Arnab, Joyita Halder, Md. Shafiqul Islam
{"title":"用ni掺杂MoS2检测分解气体:第一性原理DFT计算","authors":"Saimur Rahman Arnab, Joyita Halder, Md. Shafiqul Islam","doi":"10.1016/j.chemphys.2025.112621","DOIUrl":null,"url":null,"abstract":"<div><div>This simulation study describes first-principles density functional theory (DFT) calculations to investigate the potential of nickel-doped molybdenum disulfide (Ni–MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) as a gas sensor. The primary objective is to determine the optimal two dimensional transitional metal dichalcogenide (2D-TMD) material for gas sensing applications for detecting the decomposition gases of sulfur hexafluoride (SF<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span>) to identify internal faults in gas-insulated switchgear (GIS). By examining the structural, electrical, and sensing properties of Ni–MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, the effectiveness in detecting decomposition gases is demonstrated. The findings provide valuable insights into the fundamental mechanisms of gas sensing in Ni–MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, offering guidance for the development of more efficient gas sensing technologies. The results indicate that Ni–MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> is a promising material for detecting of three typical SF<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span> decomposition gases SO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, SOF<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and SO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>F<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. This study establishes a conceptual framework for experimental simulations of Ni–MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> materials and concludes with recommendations for enhancing SF<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span> decomposition gas sensing performance.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"593 ","pages":"Article 112621"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting decomposition gases with Ni-doped MoS2: A first-principles DFT calculation\",\"authors\":\"Saimur Rahman Arnab, Joyita Halder, Md. Shafiqul Islam\",\"doi\":\"10.1016/j.chemphys.2025.112621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This simulation study describes first-principles density functional theory (DFT) calculations to investigate the potential of nickel-doped molybdenum disulfide (Ni–MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) as a gas sensor. The primary objective is to determine the optimal two dimensional transitional metal dichalcogenide (2D-TMD) material for gas sensing applications for detecting the decomposition gases of sulfur hexafluoride (SF<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span>) to identify internal faults in gas-insulated switchgear (GIS). By examining the structural, electrical, and sensing properties of Ni–MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, the effectiveness in detecting decomposition gases is demonstrated. The findings provide valuable insights into the fundamental mechanisms of gas sensing in Ni–MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, offering guidance for the development of more efficient gas sensing technologies. The results indicate that Ni–MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> is a promising material for detecting of three typical SF<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span> decomposition gases SO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, SOF<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and SO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>F<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. This study establishes a conceptual framework for experimental simulations of Ni–MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> materials and concludes with recommendations for enhancing SF<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span> decomposition gas sensing performance.</div></div>\",\"PeriodicalId\":272,\"journal\":{\"name\":\"Chemical Physics\",\"volume\":\"593 \",\"pages\":\"Article 112621\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301010425000229\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425000229","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Detecting decomposition gases with Ni-doped MoS2: A first-principles DFT calculation
This simulation study describes first-principles density functional theory (DFT) calculations to investigate the potential of nickel-doped molybdenum disulfide (Ni–MoS) as a gas sensor. The primary objective is to determine the optimal two dimensional transitional metal dichalcogenide (2D-TMD) material for gas sensing applications for detecting the decomposition gases of sulfur hexafluoride (SF) to identify internal faults in gas-insulated switchgear (GIS). By examining the structural, electrical, and sensing properties of Ni–MoS, the effectiveness in detecting decomposition gases is demonstrated. The findings provide valuable insights into the fundamental mechanisms of gas sensing in Ni–MoS, offering guidance for the development of more efficient gas sensing technologies. The results indicate that Ni–MoS is a promising material for detecting of three typical SF decomposition gases SO, SOF and SOF. This study establishes a conceptual framework for experimental simulations of Ni–MoS materials and concludes with recommendations for enhancing SF decomposition gas sensing performance.
期刊介绍:
Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.