理想可压缩流体在完全导电壁上的不可压缩极限

IF 2.3 2区 数学 Q1 MATHEMATICS
Jiawei Wang , Junyan Zhang
{"title":"理想可压缩流体在完全导电壁上的不可压缩极限","authors":"Jiawei Wang ,&nbsp;Junyan Zhang","doi":"10.1016/j.jde.2025.02.005","DOIUrl":null,"url":null,"abstract":"<div><div>We prove the incompressible limit of compressible ideal magnetohydrodynamic (MHD) flows in a reference domain where the magnetic field is tangential to the boundary. Unlike the case of transversal magnetic fields, the linearized problem of our case is not well-posed in standard Sobolev space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow></msup><mspace></mspace><mo>(</mo><mi>m</mi><mo>≥</mo><mn>2</mn><mo>)</mo></math></span>, while the incompressible problem is still well-posed in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span>. The key observation to overcome the difficulty is a hidden structure contributed by Lorentz force in the vorticity analysis, which reveals that one should trade one normal derivative for two tangential derivatives together with a gain of Mach number weight <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Thus, the energy functional should be defined by using suitable anisotropic Sobolev spaces. The weights of Mach number should be carefully chosen according to the number of tangential derivatives, such that the energy estimates are uniform in Mach number. Besides, part of the proof is similar to the study of compressible water waves, so our result opens the possibility to study the incompressible limit of free-boundary problems in ideal MHD.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"425 ","pages":"Pages 846-894"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incompressible limit of compressible ideal MHD flows inside a perfectly conducting wall\",\"authors\":\"Jiawei Wang ,&nbsp;Junyan Zhang\",\"doi\":\"10.1016/j.jde.2025.02.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove the incompressible limit of compressible ideal magnetohydrodynamic (MHD) flows in a reference domain where the magnetic field is tangential to the boundary. Unlike the case of transversal magnetic fields, the linearized problem of our case is not well-posed in standard Sobolev space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow></msup><mspace></mspace><mo>(</mo><mi>m</mi><mo>≥</mo><mn>2</mn><mo>)</mo></math></span>, while the incompressible problem is still well-posed in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span>. The key observation to overcome the difficulty is a hidden structure contributed by Lorentz force in the vorticity analysis, which reveals that one should trade one normal derivative for two tangential derivatives together with a gain of Mach number weight <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Thus, the energy functional should be defined by using suitable anisotropic Sobolev spaces. The weights of Mach number should be carefully chosen according to the number of tangential derivatives, such that the energy estimates are uniform in Mach number. Besides, part of the proof is similar to the study of compressible water waves, so our result opens the possibility to study the incompressible limit of free-boundary problems in ideal MHD.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"425 \",\"pages\":\"Pages 846-894\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002203962500110X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962500110X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在磁场与边界相切的参考域中证明了可压缩理想磁流体流的不可压缩极限。与横向磁场的情形不同,我们的情形的线性化问题在标准Sobolev空间Hm(m≥2)中不是适定的,而不可压缩问题在Hm中仍然是适定的。克服这一困难的关键观测是涡度分析中洛伦兹力带来的一个隐藏结构,它揭示了一个法向导数与两个切向导数的交换,同时马赫数权值ε2的增加。因此,能量泛函应该用合适的各向异性Sobolev空间来定义。马赫数的权重应根据切向导数的个数仔细选择,使能量估计在马赫数上是均匀的。此外,部分证明与可压缩水波的研究类似,从而为研究理想MHD中自由边界问题的不可压缩极限开辟了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incompressible limit of compressible ideal MHD flows inside a perfectly conducting wall
We prove the incompressible limit of compressible ideal magnetohydrodynamic (MHD) flows in a reference domain where the magnetic field is tangential to the boundary. Unlike the case of transversal magnetic fields, the linearized problem of our case is not well-posed in standard Sobolev space Hm(m2), while the incompressible problem is still well-posed in Hm. The key observation to overcome the difficulty is a hidden structure contributed by Lorentz force in the vorticity analysis, which reveals that one should trade one normal derivative for two tangential derivatives together with a gain of Mach number weight ε2. Thus, the energy functional should be defined by using suitable anisotropic Sobolev spaces. The weights of Mach number should be carefully chosen according to the number of tangential derivatives, such that the energy estimates are uniform in Mach number. Besides, part of the proof is similar to the study of compressible water waves, so our result opens the possibility to study the incompressible limit of free-boundary problems in ideal MHD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信