Perron-Frobenius半群的强稳定性和几乎全局的吸引力

IF 2.1 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Pietro Lorenzetti, George Weiss
{"title":"Perron-Frobenius半群的强稳定性和几乎全局的吸引力","authors":"Pietro Lorenzetti,&nbsp;George Weiss","doi":"10.1016/j.sysconle.2025.106029","DOIUrl":null,"url":null,"abstract":"<div><div>We discuss some useful properties of the solution map (flow) of a nonlinear dynamical system with a finite-dimensional state space. Then, we introduce the Perron–Frobenius semigroup, and we prove that it is a positive strongly continuous semigroup of contractions. We show that, given a nonlinear system and an invariant set, this set is an almost global attractor if and only if certain Perron–Frobenius semigroups associated to the nonlinear system are strongly stable. Unlike other works on the Perron–Frobenius semigroup from the literature, we do not require the existence of a compact and invariant state-space for the dynamical system, we allow trajectories with finite escape time, and we do not require the attractor to be locally (Lyapunov) stable. Two simple examples are used throughout the paper to illustrate the theory.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"197 ","pages":"Article 106029"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The strong stability of the Perron–Frobenius semigroup and almost global attractivity\",\"authors\":\"Pietro Lorenzetti,&nbsp;George Weiss\",\"doi\":\"10.1016/j.sysconle.2025.106029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We discuss some useful properties of the solution map (flow) of a nonlinear dynamical system with a finite-dimensional state space. Then, we introduce the Perron–Frobenius semigroup, and we prove that it is a positive strongly continuous semigroup of contractions. We show that, given a nonlinear system and an invariant set, this set is an almost global attractor if and only if certain Perron–Frobenius semigroups associated to the nonlinear system are strongly stable. Unlike other works on the Perron–Frobenius semigroup from the literature, we do not require the existence of a compact and invariant state-space for the dynamical system, we allow trajectories with finite escape time, and we do not require the attractor to be locally (Lyapunov) stable. Two simple examples are used throughout the paper to illustrate the theory.</div></div>\",\"PeriodicalId\":49450,\"journal\":{\"name\":\"Systems & Control Letters\",\"volume\":\"197 \",\"pages\":\"Article 106029\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems & Control Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167691125000118\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691125000118","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

讨论了具有有限维状态空间的非线性动力系统的解映射(流)的一些有用性质。然后,我们引入了Perron-Frobenius半群,并证明了它是一个正的强连续收缩半群。我们证明了,给定一个非线性系统和一个不变集,当且仅当与非线性系统相关的某些Perron-Frobenius半群是强稳定的,该集合是一个几乎全局吸引子。与文献中关于Perron-Frobenius半群的其他工作不同,我们不要求动力系统存在紧致不变的状态空间,我们允许具有有限逃逸时间的轨迹,并且我们不要求吸引子是局部(Lyapunov)稳定的。本文用两个简单的例子来说明这一理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The strong stability of the Perron–Frobenius semigroup and almost global attractivity
We discuss some useful properties of the solution map (flow) of a nonlinear dynamical system with a finite-dimensional state space. Then, we introduce the Perron–Frobenius semigroup, and we prove that it is a positive strongly continuous semigroup of contractions. We show that, given a nonlinear system and an invariant set, this set is an almost global attractor if and only if certain Perron–Frobenius semigroups associated to the nonlinear system are strongly stable. Unlike other works on the Perron–Frobenius semigroup from the literature, we do not require the existence of a compact and invariant state-space for the dynamical system, we allow trajectories with finite escape time, and we do not require the attractor to be locally (Lyapunov) stable. Two simple examples are used throughout the paper to illustrate the theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systems & Control Letters
Systems & Control Letters 工程技术-运筹学与管理科学
CiteScore
4.60
自引率
3.80%
发文量
144
审稿时长
6 months
期刊介绍: Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信