用x射线显微镜研究激光粉末床熔铝的孔隙演化和非均质性机制

IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Daniel R. Sinclair, Nikhilesh Chawla
{"title":"用x射线显微镜研究激光粉末床熔铝的孔隙演化和非均质性机制","authors":"Daniel R. Sinclair,&nbsp;Nikhilesh Chawla","doi":"10.1016/j.mtla.2025.102358","DOIUrl":null,"url":null,"abstract":"<div><div>Laser powder bed fusion (LPBF) of metallic components produces a unique combination of thermomechanical phenomena such as convection, vaporization, and keyholing. The resulting melt pool structure is not easily characterized in post-facto analysis of printed parts, making process-structure correlations very difficult. Here, structures produced by laser keyhole formation during LPBF of an aerospace aluminum alloy were studied through a simplified sample geometry and controlled remelting. The final distribution of pores within the solidified wall were imaged and quantified through high resolution x-ray microscopy and correlated to the remelted melt pool structure. Based on observations from this multimodal, quantitative analysis, a mechanism for the distribution of porosity is proposed. Novel effects of laser processing conditions on microstructures are thus described, highlighting a key source of heterogeneity across the scales of melt pools to thin 3D features.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"39 ","pages":"Article 102358"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms for pore evolution and heterogeneity in laser powder bed fusion aluminum elucidated through x-ray microscopy\",\"authors\":\"Daniel R. Sinclair,&nbsp;Nikhilesh Chawla\",\"doi\":\"10.1016/j.mtla.2025.102358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Laser powder bed fusion (LPBF) of metallic components produces a unique combination of thermomechanical phenomena such as convection, vaporization, and keyholing. The resulting melt pool structure is not easily characterized in post-facto analysis of printed parts, making process-structure correlations very difficult. Here, structures produced by laser keyhole formation during LPBF of an aerospace aluminum alloy were studied through a simplified sample geometry and controlled remelting. The final distribution of pores within the solidified wall were imaged and quantified through high resolution x-ray microscopy and correlated to the remelted melt pool structure. Based on observations from this multimodal, quantitative analysis, a mechanism for the distribution of porosity is proposed. Novel effects of laser processing conditions on microstructures are thus described, highlighting a key source of heterogeneity across the scales of melt pools to thin 3D features.</div></div>\",\"PeriodicalId\":47623,\"journal\":{\"name\":\"Materialia\",\"volume\":\"39 \",\"pages\":\"Article 102358\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589152925000250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152925000250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

激光粉末床熔融(LPBF)的金属部件产生一个独特的组合热机械现象,如对流,汽化,和钥匙孔。由此产生的熔池结构在打印部件的事后分析中不容易表征,使得过程结构相关性非常困难。通过简化样品几何形状和控制重熔,研究了航空航天铝合金LPBF过程中激光锁孔形成的结构。通过高分辨率x射线显微镜对凝固壁内气孔的最终分布进行了成像和量化,并与重熔熔池结构进行了关联。基于这种多模态的定量分析,提出了孔隙度分布的机制。因此,描述了激光加工条件对微观结构的新影响,突出了跨熔池尺度到薄3D特征的非均质性的关键来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mechanisms for pore evolution and heterogeneity in laser powder bed fusion aluminum elucidated through x-ray microscopy

Mechanisms for pore evolution and heterogeneity in laser powder bed fusion aluminum elucidated through x-ray microscopy
Laser powder bed fusion (LPBF) of metallic components produces a unique combination of thermomechanical phenomena such as convection, vaporization, and keyholing. The resulting melt pool structure is not easily characterized in post-facto analysis of printed parts, making process-structure correlations very difficult. Here, structures produced by laser keyhole formation during LPBF of an aerospace aluminum alloy were studied through a simplified sample geometry and controlled remelting. The final distribution of pores within the solidified wall were imaged and quantified through high resolution x-ray microscopy and correlated to the remelted melt pool structure. Based on observations from this multimodal, quantitative analysis, a mechanism for the distribution of porosity is proposed. Novel effects of laser processing conditions on microstructures are thus described, highlighting a key source of heterogeneity across the scales of melt pools to thin 3D features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materialia
Materialia MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
2.90%
发文量
345
审稿时长
36 days
期刊介绍: Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials. Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信