利用知识图谱推进跨诊断数据分析

Q2 Medicine
Fiona Klaassen , Emanuel Schwarz
{"title":"利用知识图谱推进跨诊断数据分析","authors":"Fiona Klaassen ,&nbsp;Emanuel Schwarz","doi":"10.1016/j.bionps.2025.100122","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial intelligence approaches have tremendous potential to advance our understanding of biological and other processes contributing to mental illness risk. An important question is how such approaches can be tailored to support transdiagnostic investigations that are considered central for gaining deeper insight into etiological processes and psychopathology that may not align well with categorical illness delineations. Here, we present the so-called “knowledge graphs” that could be leveraged in analytic approaches to synthesize multimodal data of transdiagnostic relevance, identify important latent structures and biomarkers, and support the evaluation of existing transdiagnostic frameworks.</div></div>","PeriodicalId":52767,"journal":{"name":"Biomarkers in Neuropsychiatry","volume":"12 ","pages":"Article 100122"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing transdiagnostic data analytics using knowledge graphs\",\"authors\":\"Fiona Klaassen ,&nbsp;Emanuel Schwarz\",\"doi\":\"10.1016/j.bionps.2025.100122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Artificial intelligence approaches have tremendous potential to advance our understanding of biological and other processes contributing to mental illness risk. An important question is how such approaches can be tailored to support transdiagnostic investigations that are considered central for gaining deeper insight into etiological processes and psychopathology that may not align well with categorical illness delineations. Here, we present the so-called “knowledge graphs” that could be leveraged in analytic approaches to synthesize multimodal data of transdiagnostic relevance, identify important latent structures and biomarkers, and support the evaluation of existing transdiagnostic frameworks.</div></div>\",\"PeriodicalId\":52767,\"journal\":{\"name\":\"Biomarkers in Neuropsychiatry\",\"volume\":\"12 \",\"pages\":\"Article 100122\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomarkers in Neuropsychiatry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666144625000048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomarkers in Neuropsychiatry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666144625000048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

人工智能方法具有巨大的潜力,可以促进我们对导致精神疾病风险的生物和其他过程的理解。一个重要的问题是如何调整这些方法来支持跨诊断调查,这些调查被认为是获得更深入了解病因过程和精神病理学的核心,这些过程和精神病理学可能与分类疾病描述不太一致。在这里,我们提出了所谓的“知识图谱”,可以在分析方法中利用它来综合多模态的跨诊断相关性数据,识别重要的潜在结构和生物标志物,并支持对现有跨诊断框架的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing transdiagnostic data analytics using knowledge graphs
Artificial intelligence approaches have tremendous potential to advance our understanding of biological and other processes contributing to mental illness risk. An important question is how such approaches can be tailored to support transdiagnostic investigations that are considered central for gaining deeper insight into etiological processes and psychopathology that may not align well with categorical illness delineations. Here, we present the so-called “knowledge graphs” that could be leveraged in analytic approaches to synthesize multimodal data of transdiagnostic relevance, identify important latent structures and biomarkers, and support the evaluation of existing transdiagnostic frameworks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomarkers in Neuropsychiatry
Biomarkers in Neuropsychiatry Medicine-Psychiatry and Mental Health
CiteScore
4.00
自引率
0.00%
发文量
12
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信