求解Schrödinger特征值问题的非协调虚元法

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Dibyendu Adak , Gianmarco Manzini , Jesus Vellojin
{"title":"求解Schrödinger特征值问题的非协调虚元法","authors":"Dibyendu Adak ,&nbsp;Gianmarco Manzini ,&nbsp;Jesus Vellojin","doi":"10.1016/j.camwa.2025.01.035","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an in-depth analysis of the nonconforming virtual element method (VEM) as a novel approach for approximating the eigenvalues of the Schrödinger equation. Central to the strategy is deploying the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> projection operator to discretize potential terms within the model problem. Through compact operator theory, we rigorously establish the methodology's capability to achieve double-order convergence rates for the eigenvalue spectrum. Addressing the challenge posed by the nonconformity of the discrete space, we redefine the solution operator on a weaker space, which aligns with the Babuška-Osborn compactness framework. A comprehensive set of numerical experiments confirms the theoretical findings, showing the approximation qualities and computational efficiency of the method. A series of potential functions are used to illustrate the various challenges behind the choice of a potential for the simulation of the Schrödinger eigenvalue problem. These results confirm the potential of the nonconforming VEM as a robust and accurate tool for quantum mechanical eigenvalue problems.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"182 ","pages":"Pages 213-235"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonconforming virtual element method for the Schrödinger eigenvalue problem\",\"authors\":\"Dibyendu Adak ,&nbsp;Gianmarco Manzini ,&nbsp;Jesus Vellojin\",\"doi\":\"10.1016/j.camwa.2025.01.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents an in-depth analysis of the nonconforming virtual element method (VEM) as a novel approach for approximating the eigenvalues of the Schrödinger equation. Central to the strategy is deploying the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> projection operator to discretize potential terms within the model problem. Through compact operator theory, we rigorously establish the methodology's capability to achieve double-order convergence rates for the eigenvalue spectrum. Addressing the challenge posed by the nonconformity of the discrete space, we redefine the solution operator on a weaker space, which aligns with the Babuška-Osborn compactness framework. A comprehensive set of numerical experiments confirms the theoretical findings, showing the approximation qualities and computational efficiency of the method. A series of potential functions are used to illustrate the various challenges behind the choice of a potential for the simulation of the Schrödinger eigenvalue problem. These results confirm the potential of the nonconforming VEM as a robust and accurate tool for quantum mechanical eigenvalue problems.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"182 \",\"pages\":\"Pages 213-235\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125000471\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125000471","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文深入分析了非协调虚元法(VEM)作为近似Schrödinger方程特征值的一种新方法。该策略的核心是部署L2投影算子来离散模型问题中的潜在项。通过紧算子理论,我们严格地建立了该方法对特征值谱实现双阶收敛速率的能力。为了解决离散空间的不一致性所带来的挑战,我们在一个较弱的空间上重新定义了解算子,它与Babuška-Osborn紧性框架一致。一组全面的数值实验证实了理论结果,表明了该方法的逼近性和计算效率。一系列势函数被用来说明在选择一个势来模拟Schrödinger特征值问题背后的各种挑战。这些结果证实了非一致性VEM作为量子力学特征值问题的鲁棒和精确工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonconforming virtual element method for the Schrödinger eigenvalue problem
This study presents an in-depth analysis of the nonconforming virtual element method (VEM) as a novel approach for approximating the eigenvalues of the Schrödinger equation. Central to the strategy is deploying the L2 projection operator to discretize potential terms within the model problem. Through compact operator theory, we rigorously establish the methodology's capability to achieve double-order convergence rates for the eigenvalue spectrum. Addressing the challenge posed by the nonconformity of the discrete space, we redefine the solution operator on a weaker space, which aligns with the Babuška-Osborn compactness framework. A comprehensive set of numerical experiments confirms the theoretical findings, showing the approximation qualities and computational efficiency of the method. A series of potential functions are used to illustrate the various challenges behind the choice of a potential for the simulation of the Schrödinger eigenvalue problem. These results confirm the potential of the nonconforming VEM as a robust and accurate tool for quantum mechanical eigenvalue problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信