Yu-Chun Yeh, Pin-Yuan Chen, Ko-Ting Chen, I-Chi Lee
{"title":"基于MXene/ silma的新型导电生物链用于神经组织工程中神经干细胞球体的三维生物打印","authors":"Yu-Chun Yeh, Pin-Yuan Chen, Ko-Ting Chen, I-Chi Lee","doi":"10.1021/acsami.4c19373","DOIUrl":null,"url":null,"abstract":"Conductive bioinks, integrated with 3D bioprinting and electrical stimulation, are essential for advancing neural tissue engineering. This study developed a SilMA/Pectin/MXene-soybean phospholipids (SP) bioink, where SilMA (silk fibroin modified with glycidyl methacrylate) provides a structural base, pectin enhances printability and shear-thinning properties, and MXene-SP improves conductivity through superior dispersibility. Increasing pectin and MXene-SP concentrations reduced the hydrogel’s Young’s modulus, promoting neural stem cell (NSC) differentiation into neurons. Electrochemical analyses revealed that higher MXene-SP levels decreased impedance and increased redox current, while conductivity measurements showed improved performance compared to unmodified MXene. NSCs encapsulated in the bioink achieved maximum proliferation under electrical stimulation at 300 μA for 10 min daily over 5 days. Neuronal differentiation positively correlated with MXene-SP concentration and stimulation intensity. Synaptic activity and vesicle recycling, assessed using FM1–43 dye, were significantly enhanced under electrical stimulation. This study successfully developed a biocompatible conductive bioink capable of inducing neuronal differentiation. Electrical stimulation further promoted cell proliferation, neuronal differentiation, and enhanced synaptic function. This bioink shows great potential for future applications in neural tissue engineering.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"27 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative MXene/SilMA-Based Conductive Bioink for Three Dimensional Bioprinting of Neural Stem Cell Spheroids in Neural Tissue Engineering\",\"authors\":\"Yu-Chun Yeh, Pin-Yuan Chen, Ko-Ting Chen, I-Chi Lee\",\"doi\":\"10.1021/acsami.4c19373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conductive bioinks, integrated with 3D bioprinting and electrical stimulation, are essential for advancing neural tissue engineering. This study developed a SilMA/Pectin/MXene-soybean phospholipids (SP) bioink, where SilMA (silk fibroin modified with glycidyl methacrylate) provides a structural base, pectin enhances printability and shear-thinning properties, and MXene-SP improves conductivity through superior dispersibility. Increasing pectin and MXene-SP concentrations reduced the hydrogel’s Young’s modulus, promoting neural stem cell (NSC) differentiation into neurons. Electrochemical analyses revealed that higher MXene-SP levels decreased impedance and increased redox current, while conductivity measurements showed improved performance compared to unmodified MXene. NSCs encapsulated in the bioink achieved maximum proliferation under electrical stimulation at 300 μA for 10 min daily over 5 days. Neuronal differentiation positively correlated with MXene-SP concentration and stimulation intensity. Synaptic activity and vesicle recycling, assessed using FM1–43 dye, were significantly enhanced under electrical stimulation. This study successfully developed a biocompatible conductive bioink capable of inducing neuronal differentiation. Electrical stimulation further promoted cell proliferation, neuronal differentiation, and enhanced synaptic function. This bioink shows great potential for future applications in neural tissue engineering.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c19373\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c19373","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Innovative MXene/SilMA-Based Conductive Bioink for Three Dimensional Bioprinting of Neural Stem Cell Spheroids in Neural Tissue Engineering
Conductive bioinks, integrated with 3D bioprinting and electrical stimulation, are essential for advancing neural tissue engineering. This study developed a SilMA/Pectin/MXene-soybean phospholipids (SP) bioink, where SilMA (silk fibroin modified with glycidyl methacrylate) provides a structural base, pectin enhances printability and shear-thinning properties, and MXene-SP improves conductivity through superior dispersibility. Increasing pectin and MXene-SP concentrations reduced the hydrogel’s Young’s modulus, promoting neural stem cell (NSC) differentiation into neurons. Electrochemical analyses revealed that higher MXene-SP levels decreased impedance and increased redox current, while conductivity measurements showed improved performance compared to unmodified MXene. NSCs encapsulated in the bioink achieved maximum proliferation under electrical stimulation at 300 μA for 10 min daily over 5 days. Neuronal differentiation positively correlated with MXene-SP concentration and stimulation intensity. Synaptic activity and vesicle recycling, assessed using FM1–43 dye, were significantly enhanced under electrical stimulation. This study successfully developed a biocompatible conductive bioink capable of inducing neuronal differentiation. Electrical stimulation further promoted cell proliferation, neuronal differentiation, and enhanced synaptic function. This bioink shows great potential for future applications in neural tissue engineering.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.