提高柔性宽禁带钙钛矿太阳能电池光稳定性的组分和界面工程

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Anna Wąsiak-Maciejak, Łukasz Przypis, Wiktor Żuraw, Kinga Rycek, Patrycja Janicka, Mateusz Ścigaj, Konrad Dyk, Huagui Lai, Adrianna Piejko, Damian Pucicki, Fan Fu, Vasyl Kinzhybalo and Konrad Wojciechowski
{"title":"提高柔性宽禁带钙钛矿太阳能电池光稳定性的组分和界面工程","authors":"Anna Wąsiak-Maciejak, Łukasz Przypis, Wiktor Żuraw, Kinga Rycek, Patrycja Janicka, Mateusz Ścigaj, Konrad Dyk, Huagui Lai, Adrianna Piejko, Damian Pucicki, Fan Fu, Vasyl Kinzhybalo and Konrad Wojciechowski","doi":"10.1039/D4TA07266A","DOIUrl":null,"url":null,"abstract":"<p >Metal halide perovskites, due to their facile bandgap tunability, are excellent materials for highly efficient multi-junction solar cell architecture. However, commonly used mixed halide wide-bandgap (WBG) perovskite compositions suffer from performance-damaging phase instability as a result of prolonged light exposure. Here, we demonstrate a dual strategy to suppress this effect in flexible WBG (<em>E</em><small><sub>g</sub></small> = 1.76 eV) perovskite solar cells (PSCs). First, we optimized the perovskite precursor solution by synergistic addition of lead thiocyanate (Pb(SCN)<small><sub>2</sub></small>) and 4-fluoro-phenethylammonium iodide (4FPEAI). This modification led to a successful reduction in non-radiative recombination and suppression of ionic mobility. Next, we incorporated a carbazole-based self-assembling molecule, equipped with three anchoring sites, 4-((5<em>H</em>-diindolo[3,2-<em>a</em>:3′,2′-<em>c</em>]carbazole-5,10,15-triyl)tris(butane-4,1-diyl))tris(phosphonic acid) (TRIPOD-C4) as a hole-transporting layer. Such a molecular design promoted uniform surface packing with the p-type material, greatly improving hole extraction efficacy. The combined effect of these two developments led to a T85 of 1200 hours in the light-soak aging test of a flexible WBG perovskite solar cell (PSC) at 65 °C (illumination with LED light of 600 mW cm<small><sup>−2</sup></small>). Moreover, we report a large-area (1 cm<small><sup>2</sup></small>) flexible WBG PSC of 15% efficiency and a flexible all-perovskite tandem device reaching 22.5% efficiency.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 10","pages":" 7335-7346"},"PeriodicalIF":9.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compositional and interfacial engineering for improved light stability of flexible wide-bandgap perovskite solar cells†\",\"authors\":\"Anna Wąsiak-Maciejak, Łukasz Przypis, Wiktor Żuraw, Kinga Rycek, Patrycja Janicka, Mateusz Ścigaj, Konrad Dyk, Huagui Lai, Adrianna Piejko, Damian Pucicki, Fan Fu, Vasyl Kinzhybalo and Konrad Wojciechowski\",\"doi\":\"10.1039/D4TA07266A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Metal halide perovskites, due to their facile bandgap tunability, are excellent materials for highly efficient multi-junction solar cell architecture. However, commonly used mixed halide wide-bandgap (WBG) perovskite compositions suffer from performance-damaging phase instability as a result of prolonged light exposure. Here, we demonstrate a dual strategy to suppress this effect in flexible WBG (<em>E</em><small><sub>g</sub></small> = 1.76 eV) perovskite solar cells (PSCs). First, we optimized the perovskite precursor solution by synergistic addition of lead thiocyanate (Pb(SCN)<small><sub>2</sub></small>) and 4-fluoro-phenethylammonium iodide (4FPEAI). This modification led to a successful reduction in non-radiative recombination and suppression of ionic mobility. Next, we incorporated a carbazole-based self-assembling molecule, equipped with three anchoring sites, 4-((5<em>H</em>-diindolo[3,2-<em>a</em>:3′,2′-<em>c</em>]carbazole-5,10,15-triyl)tris(butane-4,1-diyl))tris(phosphonic acid) (TRIPOD-C4) as a hole-transporting layer. Such a molecular design promoted uniform surface packing with the p-type material, greatly improving hole extraction efficacy. The combined effect of these two developments led to a T85 of 1200 hours in the light-soak aging test of a flexible WBG perovskite solar cell (PSC) at 65 °C (illumination with LED light of 600 mW cm<small><sup>−2</sup></small>). Moreover, we report a large-area (1 cm<small><sup>2</sup></small>) flexible WBG PSC of 15% efficiency and a flexible all-perovskite tandem device reaching 22.5% efficiency.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 10\",\"pages\":\" 7335-7346\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta07266a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta07266a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

金属卤化物钙钛矿,由于其容易的带隙可调性,是高效多结太阳能电池结构的优秀材料。然而,通常使用的混合卤化物宽带隙钙钛矿组合物由于长时间的光照射而遭受性能破坏的相不稳定性。在这里,我们展示了一种双重策略来抑制柔性WBG (Eg = 1.76 eV)钙钛矿太阳能电池(PSCs)的这种效应。首先,通过硫氰酸铅(Pb(SCN)2)和4-氟苯乙基碘化铵(4FPEAI)的协同添加,优化了钙钛矿前驱体溶液。这种修饰成功地减少了非辐射重组和抑制离子迁移率。接下来,我们引入了一个基于咔唑的自组装分子,配备了三个锚定位点,4-((5h -二吲哚[3,2-a:3 ',2 ' -c]咔唑-5,10,15-三基)三(丁烷-4,1-二基))三(膦酸)(TRIPOD-C4)作为空穴运输层。这种分子设计促进了p型材料的均匀表面填充,大大提高了抽孔效率。在65°C (600 mW cm - 2的led照明)的光浸老化测试中,这两个发展的综合影响导致柔性WBG钙钛矿太阳能电池(PSC)的T85为1200小时。此外,我们还报道了一种效率为15%的大面积(1 cm2)柔性WBG PSC和一种效率达到22.5%的柔性全钙钛矿串联装置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Compositional and interfacial engineering for improved light stability of flexible wide-bandgap perovskite solar cells†

Compositional and interfacial engineering for improved light stability of flexible wide-bandgap perovskite solar cells†

Compositional and interfacial engineering for improved light stability of flexible wide-bandgap perovskite solar cells†

Metal halide perovskites, due to their facile bandgap tunability, are excellent materials for highly efficient multi-junction solar cell architecture. However, commonly used mixed halide wide-bandgap (WBG) perovskite compositions suffer from performance-damaging phase instability as a result of prolonged light exposure. Here, we demonstrate a dual strategy to suppress this effect in flexible WBG (Eg = 1.76 eV) perovskite solar cells (PSCs). First, we optimized the perovskite precursor solution by synergistic addition of lead thiocyanate (Pb(SCN)2) and 4-fluoro-phenethylammonium iodide (4FPEAI). This modification led to a successful reduction in non-radiative recombination and suppression of ionic mobility. Next, we incorporated a carbazole-based self-assembling molecule, equipped with three anchoring sites, 4-((5H-diindolo[3,2-a:3′,2′-c]carbazole-5,10,15-triyl)tris(butane-4,1-diyl))tris(phosphonic acid) (TRIPOD-C4) as a hole-transporting layer. Such a molecular design promoted uniform surface packing with the p-type material, greatly improving hole extraction efficacy. The combined effect of these two developments led to a T85 of 1200 hours in the light-soak aging test of a flexible WBG perovskite solar cell (PSC) at 65 °C (illumination with LED light of 600 mW cm−2). Moreover, we report a large-area (1 cm2) flexible WBG PSC of 15% efficiency and a flexible all-perovskite tandem device reaching 22.5% efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信