{"title":"磁胶体棒在外场中的定向组装","authors":"Matthew A. Dorsey, Carol K. Hall","doi":"10.1021/acs.langmuir.4c03714","DOIUrl":null,"url":null,"abstract":"In fabricating new colloid-based materials via bottom-up design, particle–particle interactions are engineered to encourage the formation of the desired assemblies. One way to do this is to apply an external field, which orients magnetically polarized particles in the field direction. External fields have the advantage that they can be programmed to change in time (e.g., field rotation or toggling), tunably shifting the system away from equilibrium. Here, we apply a model for ferromagnetic colloidal rods that simulates their phase behavior in the presence of an external magnetic field with constant strength and direction. An annealing process slowly reduces the temperature during molecular dynamics simulations to estimate the system’s equilibrium configuration in the ground state when the magnetic interactions between colloidal rods dominate the thermal forces. Numerous annealing simulations are performed at various particle densities and external field strengths. In the absence of an external field, the magnetic rods assemble into antiparallel configurations. When the strength of the external field is sufficiently strong, the magnetic rods are forced to orient in the direction of the field and therefore form head-to-tail structures. The formation of a head-to-tail state is associated with a net magnetic moment that results from the collective alignment of all magnetic particles in the field direction. Furthermore, when systems of magnetic rods assemble into a head-to-tail state, they occupy more space than they do in a phase in which most rods are assembled into antiparallel configurations. Phase diagrams predict that the magnetic properties of systems of rod-like magnetic particles can switch between magnetic and nonmagnetic states by tuning not only the external field strength but also the particle density.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"141 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Directed Assembly of Magnetic Colloidal Rods in an External Field\",\"authors\":\"Matthew A. Dorsey, Carol K. Hall\",\"doi\":\"10.1021/acs.langmuir.4c03714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In fabricating new colloid-based materials via bottom-up design, particle–particle interactions are engineered to encourage the formation of the desired assemblies. One way to do this is to apply an external field, which orients magnetically polarized particles in the field direction. External fields have the advantage that they can be programmed to change in time (e.g., field rotation or toggling), tunably shifting the system away from equilibrium. Here, we apply a model for ferromagnetic colloidal rods that simulates their phase behavior in the presence of an external magnetic field with constant strength and direction. An annealing process slowly reduces the temperature during molecular dynamics simulations to estimate the system’s equilibrium configuration in the ground state when the magnetic interactions between colloidal rods dominate the thermal forces. Numerous annealing simulations are performed at various particle densities and external field strengths. In the absence of an external field, the magnetic rods assemble into antiparallel configurations. When the strength of the external field is sufficiently strong, the magnetic rods are forced to orient in the direction of the field and therefore form head-to-tail structures. The formation of a head-to-tail state is associated with a net magnetic moment that results from the collective alignment of all magnetic particles in the field direction. Furthermore, when systems of magnetic rods assemble into a head-to-tail state, they occupy more space than they do in a phase in which most rods are assembled into antiparallel configurations. Phase diagrams predict that the magnetic properties of systems of rod-like magnetic particles can switch between magnetic and nonmagnetic states by tuning not only the external field strength but also the particle density.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"141 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c03714\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03714","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Directed Assembly of Magnetic Colloidal Rods in an External Field
In fabricating new colloid-based materials via bottom-up design, particle–particle interactions are engineered to encourage the formation of the desired assemblies. One way to do this is to apply an external field, which orients magnetically polarized particles in the field direction. External fields have the advantage that they can be programmed to change in time (e.g., field rotation or toggling), tunably shifting the system away from equilibrium. Here, we apply a model for ferromagnetic colloidal rods that simulates their phase behavior in the presence of an external magnetic field with constant strength and direction. An annealing process slowly reduces the temperature during molecular dynamics simulations to estimate the system’s equilibrium configuration in the ground state when the magnetic interactions between colloidal rods dominate the thermal forces. Numerous annealing simulations are performed at various particle densities and external field strengths. In the absence of an external field, the magnetic rods assemble into antiparallel configurations. When the strength of the external field is sufficiently strong, the magnetic rods are forced to orient in the direction of the field and therefore form head-to-tail structures. The formation of a head-to-tail state is associated with a net magnetic moment that results from the collective alignment of all magnetic particles in the field direction. Furthermore, when systems of magnetic rods assemble into a head-to-tail state, they occupy more space than they do in a phase in which most rods are assembled into antiparallel configurations. Phase diagrams predict that the magnetic properties of systems of rod-like magnetic particles can switch between magnetic and nonmagnetic states by tuning not only the external field strength but also the particle density.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).