掺钒氧化铪:具有负电容的高续航铁电薄膜

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ehsan Ansari, Niccolò Martinolli, Emeric Hartmann, Anna Varini, Igor Stolichnov, Adrian Mihai Ionescu
{"title":"掺钒氧化铪:具有负电容的高续航铁电薄膜","authors":"Ehsan Ansari, Niccolò Martinolli, Emeric Hartmann, Anna Varini, Igor Stolichnov, Adrian Mihai Ionescu","doi":"10.1021/acs.nanolett.4c05671","DOIUrl":null,"url":null,"abstract":"This study proposes and validates a novel CMOS-compatible ferroelectric thin-film insulator made of vanadium-doped hafnium oxide (V:HfO<sub>2</sub>) by using an optimized atomic layer deposition (ALD) process. Comparative electrical performance analysis of metal–ferroelectric–metal capacitors with varying V-doping concentrations, along with advanced material characterizations, confirmed the ferroelectric behavior and reliability of V:HfO<sub>2</sub>. With remnant polarization (<i>P</i><sub>r</sub>) values up to 20 μC/cm<sup>2</sup>, a coercive field (<i>E</i><sub>c</sub>) of 1.5 MV/cm, excellent endurance (&gt;10<sup>11</sup> cycles without failure, extrapolated to 10<sup>12</sup> cycles), projected 10-year nonvolatile retention (&gt;100 days measured), and large grain sizes of ∼180 nm, V:HfO<sub>2</sub> emerges as a promising robust candidate for nonvolatile memory and neuromorphic applications. Importantly, negative capacitance (NC) effects were observed and analyzed in V:HfO<sub>2</sub> through pulsed measurements, demonstrating its potential for NC applications. Finally, this novel ferroelectric shows potential as a gating insulator for future 3-terminal vanadium dioxide Mott-insulator devices and sensors, achieved through an all-ALD process.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"78 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vanadium-Doped Hafnium Oxide: A High-Endurance Ferroelectric Thin Film with Demonstrated Negative Capacitance\",\"authors\":\"Ehsan Ansari, Niccolò Martinolli, Emeric Hartmann, Anna Varini, Igor Stolichnov, Adrian Mihai Ionescu\",\"doi\":\"10.1021/acs.nanolett.4c05671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes and validates a novel CMOS-compatible ferroelectric thin-film insulator made of vanadium-doped hafnium oxide (V:HfO<sub>2</sub>) by using an optimized atomic layer deposition (ALD) process. Comparative electrical performance analysis of metal–ferroelectric–metal capacitors with varying V-doping concentrations, along with advanced material characterizations, confirmed the ferroelectric behavior and reliability of V:HfO<sub>2</sub>. With remnant polarization (<i>P</i><sub>r</sub>) values up to 20 μC/cm<sup>2</sup>, a coercive field (<i>E</i><sub>c</sub>) of 1.5 MV/cm, excellent endurance (&gt;10<sup>11</sup> cycles without failure, extrapolated to 10<sup>12</sup> cycles), projected 10-year nonvolatile retention (&gt;100 days measured), and large grain sizes of ∼180 nm, V:HfO<sub>2</sub> emerges as a promising robust candidate for nonvolatile memory and neuromorphic applications. Importantly, negative capacitance (NC) effects were observed and analyzed in V:HfO<sub>2</sub> through pulsed measurements, demonstrating its potential for NC applications. Finally, this novel ferroelectric shows potential as a gating insulator for future 3-terminal vanadium dioxide Mott-insulator devices and sensors, achieved through an all-ALD process.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c05671\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05671","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用优化的原子层沉积(ALD)工艺,提出并验证了一种新型cmos兼容的掺钒氧化铪(V:HfO2)铁电薄膜绝缘体。通过对不同V掺杂浓度的金属-铁电-金属电容器的电性能对比分析,以及先进的材料表征,证实了V:HfO2的铁电性能和可靠性。残余极化(Pr)值高达20 μC/cm2,矫顽力场(Ec)为1.5 MV/cm,优异的耐久性(1011次循环无故障,外推至1012次循环),预计10年的非易失性保留率(测量的100天),以及大晶粒尺寸约180 nm, V:HfO2成为非易失性记忆和神经形态应用的有希望的强大候选者。重要的是,通过脉冲测量观察和分析了V:HfO2中的负电容(NC)效应,证明了其在NC应用中的潜力。最后,这种新型铁电体显示出作为未来三端二氧化钒mott绝缘体器件和传感器的门控绝缘体的潜力,通过全ald工艺实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Vanadium-Doped Hafnium Oxide: A High-Endurance Ferroelectric Thin Film with Demonstrated Negative Capacitance

Vanadium-Doped Hafnium Oxide: A High-Endurance Ferroelectric Thin Film with Demonstrated Negative Capacitance
This study proposes and validates a novel CMOS-compatible ferroelectric thin-film insulator made of vanadium-doped hafnium oxide (V:HfO2) by using an optimized atomic layer deposition (ALD) process. Comparative electrical performance analysis of metal–ferroelectric–metal capacitors with varying V-doping concentrations, along with advanced material characterizations, confirmed the ferroelectric behavior and reliability of V:HfO2. With remnant polarization (Pr) values up to 20 μC/cm2, a coercive field (Ec) of 1.5 MV/cm, excellent endurance (>1011 cycles without failure, extrapolated to 1012 cycles), projected 10-year nonvolatile retention (>100 days measured), and large grain sizes of ∼180 nm, V:HfO2 emerges as a promising robust candidate for nonvolatile memory and neuromorphic applications. Importantly, negative capacitance (NC) effects were observed and analyzed in V:HfO2 through pulsed measurements, demonstrating its potential for NC applications. Finally, this novel ferroelectric shows potential as a gating insulator for future 3-terminal vanadium dioxide Mott-insulator devices and sensors, achieved through an all-ALD process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信