Arjun Nayak, Debobrata Rajak, Balázs Farkas, Camilio Granados, Philipp Stammer, Javier Rivera-Dean, Theocharis Lamprou, Katalin Varju, Yann Mairesse, Marcelo F. Ciappina, Maciej Lewenstein, Paraskevas Tzallas
{"title":"碱金属激光光电离在半导体中产生的真空紫外高次谐波的阿秒计量","authors":"Arjun Nayak, Debobrata Rajak, Balázs Farkas, Camilio Granados, Philipp Stammer, Javier Rivera-Dean, Theocharis Lamprou, Katalin Varju, Yann Mairesse, Marcelo F. Ciappina, Maciej Lewenstein, Paraskevas Tzallas","doi":"10.1038/s41467-025-56759-0","DOIUrl":null,"url":null,"abstract":"<p>Semiconductor crystals driven by strong mid-infrared pulses offer advantages for studying many-body physics and ultrafast optoelectronics via high-harmonic generation. While the process has been used to study solids in the presence strong mid-infrared fields, its potential as an attosecond light source is largely underexplored. We demonstrate that high-harmonics emitted from zinc-oxide crystals produce attosecond pulses, measured through spectroscopy of alkali metals. Using a cross-correlation approach, we photoionize Cesium atoms with vacuum-ultraviolet high-harmonics in the presence of a mid-infrared laser field. We observe oscillations in the photoelectron yield, originating from the instantaneous polarization of atoms by the laser field. The phase of these oscillations encodes the attosecond synchronization of the high-harmonics and is used for attosecond pulse metrology. This source opens new spectral windows for attosecond spectroscopy, enabling studies of bound-state dynamics in natural systems with low ionization energies, while facilitating the generation of non-classical entangled light states in the visible-VUV.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"85 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attosecond metrology of vacuum-ultraviolet high-order harmonics generated in semiconductors via laser-dressed photoionization of alkali metals\",\"authors\":\"Arjun Nayak, Debobrata Rajak, Balázs Farkas, Camilio Granados, Philipp Stammer, Javier Rivera-Dean, Theocharis Lamprou, Katalin Varju, Yann Mairesse, Marcelo F. Ciappina, Maciej Lewenstein, Paraskevas Tzallas\",\"doi\":\"10.1038/s41467-025-56759-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Semiconductor crystals driven by strong mid-infrared pulses offer advantages for studying many-body physics and ultrafast optoelectronics via high-harmonic generation. While the process has been used to study solids in the presence strong mid-infrared fields, its potential as an attosecond light source is largely underexplored. We demonstrate that high-harmonics emitted from zinc-oxide crystals produce attosecond pulses, measured through spectroscopy of alkali metals. Using a cross-correlation approach, we photoionize Cesium atoms with vacuum-ultraviolet high-harmonics in the presence of a mid-infrared laser field. We observe oscillations in the photoelectron yield, originating from the instantaneous polarization of atoms by the laser field. The phase of these oscillations encodes the attosecond synchronization of the high-harmonics and is used for attosecond pulse metrology. This source opens new spectral windows for attosecond spectroscopy, enabling studies of bound-state dynamics in natural systems with low ionization energies, while facilitating the generation of non-classical entangled light states in the visible-VUV.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-56759-0\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56759-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Attosecond metrology of vacuum-ultraviolet high-order harmonics generated in semiconductors via laser-dressed photoionization of alkali metals
Semiconductor crystals driven by strong mid-infrared pulses offer advantages for studying many-body physics and ultrafast optoelectronics via high-harmonic generation. While the process has been used to study solids in the presence strong mid-infrared fields, its potential as an attosecond light source is largely underexplored. We demonstrate that high-harmonics emitted from zinc-oxide crystals produce attosecond pulses, measured through spectroscopy of alkali metals. Using a cross-correlation approach, we photoionize Cesium atoms with vacuum-ultraviolet high-harmonics in the presence of a mid-infrared laser field. We observe oscillations in the photoelectron yield, originating from the instantaneous polarization of atoms by the laser field. The phase of these oscillations encodes the attosecond synchronization of the high-harmonics and is used for attosecond pulse metrology. This source opens new spectral windows for attosecond spectroscopy, enabling studies of bound-state dynamics in natural systems with low ionization energies, while facilitating the generation of non-classical entangled light states in the visible-VUV.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.