Ben Wang, Zhengxing Su, Meiyan Kuang, Yi Luo, Minhao Xu, Meng Sun, Xingyou Liu, Yue Guo, Lu Bai, Yu Wang, Xinlei Yan, Jing Xie, Yaqin Tang
{"title":"盐酸壳聚糖包衣和非离子表面活性剂修饰乳小体:一种较好的口服给药方式。","authors":"Ben Wang, Zhengxing Su, Meiyan Kuang, Yi Luo, Minhao Xu, Meng Sun, Xingyou Liu, Yue Guo, Lu Bai, Yu Wang, Xinlei Yan, Jing Xie, Yaqin Tang","doi":"10.1088/1748-605X/adb2cf","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes is now a global chronic disease, with the number of people with diabetes expected to reach 643 million by the end of 2030. Semaglutide, a human glucagon-like peptide-1 (GLP-1) analogue with 94% similarity to human GLP-1, can promote insulin secretion and repress glucagon secretion in a glucose concentration-dependent manner, resulting in substantial improvement of blood glucose levels and reducing the risk of hypoglycemia in patients with type 2 diabetes. To improve the absorption efficiency of semaglutide in oral delivery, we developed chitosan hydrochloride-coated and nonionic surfactant-modified niosomes (CS.HCL-NSPEs-NIO) as a new way to encapsulate it. The results showed that CS.HCL-NSPEs-NIO could efficiently penetrate the cell junctions in the intestinal endothelium and therefore promote drug absorbance. In addition, gastrointestinal distribution studies revealed that CS. HCL-NSPEs-NIO could stay in the intestine for more than 4 h, thus allowing for long-term glucose regulation. Effective reduction of blood glucose levels and weight loss were observed in db/db mice while no toxicity was detected in major organs. On the whole, our recommendation is that CS.HCL-NSPEs-NIO shows promise as an oral delivery tool for enhancing the hypoglycemic effects of semaglutide.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chitosan hydrochloride coated and nonionic surfactant modified niosomes: a better way for oral administration of semaglutide.\",\"authors\":\"Ben Wang, Zhengxing Su, Meiyan Kuang, Yi Luo, Minhao Xu, Meng Sun, Xingyou Liu, Yue Guo, Lu Bai, Yu Wang, Xinlei Yan, Jing Xie, Yaqin Tang\",\"doi\":\"10.1088/1748-605X/adb2cf\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes is now a global chronic disease, with the number of people with diabetes expected to reach 643 million by the end of 2030. Semaglutide, a human glucagon-like peptide-1 (GLP-1) analogue with 94% similarity to human GLP-1, can promote insulin secretion and repress glucagon secretion in a glucose concentration-dependent manner, resulting in substantial improvement of blood glucose levels and reducing the risk of hypoglycemia in patients with type 2 diabetes. To improve the absorption efficiency of semaglutide in oral delivery, we developed chitosan hydrochloride-coated and nonionic surfactant-modified niosomes (CS.HCL-NSPEs-NIO) as a new way to encapsulate it. The results showed that CS.HCL-NSPEs-NIO could efficiently penetrate the cell junctions in the intestinal endothelium and therefore promote drug absorbance. In addition, gastrointestinal distribution studies revealed that CS. HCL-NSPEs-NIO could stay in the intestine for more than 4 h, thus allowing for long-term glucose regulation. Effective reduction of blood glucose levels and weight loss were observed in db/db mice while no toxicity was detected in major organs. On the whole, our recommendation is that CS.HCL-NSPEs-NIO shows promise as an oral delivery tool for enhancing the hypoglycemic effects of semaglutide.</p>\",\"PeriodicalId\":72389,\"journal\":{\"name\":\"Biomedical materials (Bristol, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/adb2cf\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/adb2cf","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chitosan hydrochloride coated and nonionic surfactant modified niosomes: a better way for oral administration of semaglutide.
Diabetes is now a global chronic disease, with the number of people with diabetes expected to reach 643 million by the end of 2030. Semaglutide, a human glucagon-like peptide-1 (GLP-1) analogue with 94% similarity to human GLP-1, can promote insulin secretion and repress glucagon secretion in a glucose concentration-dependent manner, resulting in substantial improvement of blood glucose levels and reducing the risk of hypoglycemia in patients with type 2 diabetes. To improve the absorption efficiency of semaglutide in oral delivery, we developed chitosan hydrochloride-coated and nonionic surfactant-modified niosomes (CS.HCL-NSPEs-NIO) as a new way to encapsulate it. The results showed that CS.HCL-NSPEs-NIO could efficiently penetrate the cell junctions in the intestinal endothelium and therefore promote drug absorbance. In addition, gastrointestinal distribution studies revealed that CS. HCL-NSPEs-NIO could stay in the intestine for more than 4 h, thus allowing for long-term glucose regulation. Effective reduction of blood glucose levels and weight loss were observed in db/db mice while no toxicity was detected in major organs. On the whole, our recommendation is that CS.HCL-NSPEs-NIO shows promise as an oral delivery tool for enhancing the hypoglycemic effects of semaglutide.