阿拉伯半乳糖蛋白在花粉粒发育中的作用研究进展。

IF 2.9 4区 生物学 Q2 PLANT SCIENCES
Sara Foubert-Mendes, Jessy Silva, Maria João Ferreira, Luís Gustavo Pereira, Sílvia Coimbra
{"title":"阿拉伯半乳糖蛋白在花粉粒发育中的作用研究进展。","authors":"Sara Foubert-Mendes, Jessy Silva, Maria João Ferreira, Luís Gustavo Pereira, Sílvia Coimbra","doi":"10.1007/s00497-024-00515-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Overview of the current understanding of PG development, PT growth and the role of AGPs in these processes. The pollen grain (PG) is a complex structure composed of three cells: the vegetative cell which develops into a pollen tube (PT) and two sperm cells that will fuse with the egg cell and central cell, giving rise to the embryo and endosperm, respectively. This resilient gametophyte is constantly subjected to selective pressures, leading to a diverse range of characteristics, with one of its defining features being the pollen cell wall. In this review, we closely examine the developmental stages of PG formation and PT growth, with a specific focus on the dynamic roles of arabinogalactan-proteins (AGPs) throughout these processes. AGPs are initially present in pollen mother cells and persist throughout PT growth. In the early stages, AGPs play a crucial role in primexine anchoring, followed by nexine and intine formation as well as cellulose deposition, thereby providing essential structural support to the PG. As PGs mature, AGPs continue to be essential, as their absence often leads to the collapse of PGs before they reach full maturity. Moreover, the absence of AGPs during PT growth leads to abnormal growth patterns, likely due to disruptions of cellulose, callose, and F-actin deposition, as well as perturbations in calcium ion (Ca<sup>2+</sup>) signalling. Understanding the intricate interplay between AGPs and PG development sheds light on the underlying mechanisms that drive reproductive success and highlights the indispensable role of AGPs in ensuring the integrity and functionality of PGs.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"38 1","pages":"8"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802600/pdf/","citationCount":"0","resultStr":"{\"title\":\"A review on the function of arabinogalactan-proteins during pollen grain development.\",\"authors\":\"Sara Foubert-Mendes, Jessy Silva, Maria João Ferreira, Luís Gustavo Pereira, Sílvia Coimbra\",\"doi\":\"10.1007/s00497-024-00515-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>Overview of the current understanding of PG development, PT growth and the role of AGPs in these processes. The pollen grain (PG) is a complex structure composed of three cells: the vegetative cell which develops into a pollen tube (PT) and two sperm cells that will fuse with the egg cell and central cell, giving rise to the embryo and endosperm, respectively. This resilient gametophyte is constantly subjected to selective pressures, leading to a diverse range of characteristics, with one of its defining features being the pollen cell wall. In this review, we closely examine the developmental stages of PG formation and PT growth, with a specific focus on the dynamic roles of arabinogalactan-proteins (AGPs) throughout these processes. AGPs are initially present in pollen mother cells and persist throughout PT growth. In the early stages, AGPs play a crucial role in primexine anchoring, followed by nexine and intine formation as well as cellulose deposition, thereby providing essential structural support to the PG. As PGs mature, AGPs continue to be essential, as their absence often leads to the collapse of PGs before they reach full maturity. Moreover, the absence of AGPs during PT growth leads to abnormal growth patterns, likely due to disruptions of cellulose, callose, and F-actin deposition, as well as perturbations in calcium ion (Ca<sup>2+</sup>) signalling. Understanding the intricate interplay between AGPs and PG development sheds light on the underlying mechanisms that drive reproductive success and highlights the indispensable role of AGPs in ensuring the integrity and functionality of PGs.</p>\",\"PeriodicalId\":51297,\"journal\":{\"name\":\"Plant Reproduction\",\"volume\":\"38 1\",\"pages\":\"8\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802600/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Reproduction\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00497-024-00515-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00497-024-00515-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了目前对PG发育、PT生长和agp在这些过程中的作用的认识。花粉粒(PG)是一个由三个细胞组成的复杂结构:营养细胞发育成花粉管(PT),两个精子细胞与卵细胞和中央细胞融合,分别产生胚胎和胚乳。这种有弹性的配子体不断受到选择压力,导致其具有各种各样的特征,其定义特征之一是花粉细胞壁。在这篇综述中,我们仔细研究PG形成和PT生长的发育阶段,特别关注阿拉伯半乳糖蛋白(AGPs)在这些过程中的动态作用。agp最初存在于花粉母细胞中,并在整个花粉生长过程中持续存在。在早期阶段,AGPs在初质锚定中起着至关重要的作用,随后是内氨酸和内氨酸的形成以及纤维素的沉积,从而为PG提供必要的结构支持。随着PG的成熟,AGPs仍然是必不可少的,因为它们的缺失通常会导致PG在完全成熟之前崩溃。此外,在PT生长过程中AGPs的缺失会导致异常的生长模式,可能是由于纤维素、胼胝质和f -肌动蛋白沉积的破坏,以及钙离子(Ca2+)信号的扰动。了解AGPs和PG发育之间复杂的相互作用有助于揭示驱动生殖成功的潜在机制,并强调AGPs在确保PG完整性和功能方面不可或缺的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review on the function of arabinogalactan-proteins during pollen grain development.

Key message: Overview of the current understanding of PG development, PT growth and the role of AGPs in these processes. The pollen grain (PG) is a complex structure composed of three cells: the vegetative cell which develops into a pollen tube (PT) and two sperm cells that will fuse with the egg cell and central cell, giving rise to the embryo and endosperm, respectively. This resilient gametophyte is constantly subjected to selective pressures, leading to a diverse range of characteristics, with one of its defining features being the pollen cell wall. In this review, we closely examine the developmental stages of PG formation and PT growth, with a specific focus on the dynamic roles of arabinogalactan-proteins (AGPs) throughout these processes. AGPs are initially present in pollen mother cells and persist throughout PT growth. In the early stages, AGPs play a crucial role in primexine anchoring, followed by nexine and intine formation as well as cellulose deposition, thereby providing essential structural support to the PG. As PGs mature, AGPs continue to be essential, as their absence often leads to the collapse of PGs before they reach full maturity. Moreover, the absence of AGPs during PT growth leads to abnormal growth patterns, likely due to disruptions of cellulose, callose, and F-actin deposition, as well as perturbations in calcium ion (Ca2+) signalling. Understanding the intricate interplay between AGPs and PG development sheds light on the underlying mechanisms that drive reproductive success and highlights the indispensable role of AGPs in ensuring the integrity and functionality of PGs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Reproduction
Plant Reproduction PLANT SCIENCES-REPRODUCTIVE BIOLOGY
CiteScore
6.30
自引率
2.90%
发文量
19
期刊介绍: Plant Reproduction (formerly known as Sexual Plant Reproduction) is a journal devoted to publishing high-quality research in the field of reproductive processes in plants. Article formats include original research papers, expert reviews, methods reports and opinion papers. Articles are selected based on significance for the field of plant reproduction, spanning from the induction of flowering to fruit development. Topics incl … show all
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信