细长孤立感器对机械刺激的电生理和行为反应。

IF 1.9 4区 心理学 Q3 BEHAVIORAL SCIENCES
Pallabi Kundu, Mariela Oviedo-Diego, Franco Cargnelutti, R Ryan Jones, Erika Garcia, Eileen A Hebets, Douglas D Gaffin
{"title":"细长孤立感器对机械刺激的电生理和行为反应。","authors":"Pallabi Kundu, Mariela Oviedo-Diego, Franco Cargnelutti, R Ryan Jones, Erika Garcia, Eileen A Hebets, Douglas D Gaffin","doi":"10.1007/s00359-025-01731-y","DOIUrl":null,"url":null,"abstract":"<p><p>A fundamental understanding of animal sensory systems is crucial for comprehending their interactions with the environment and with other conspecifics. However, knowledge gaps persist, particularly in arachnids like the order Solifugae. While certain solifuge setae and palpal papillae have been studied structurally and electrophysiologically, providing evidence of chemoreception and mechanoreception, the sensilla on their walking legs remain unexplored. Notably, elongated sensilla on the femur and tibia of the 4th walking legs resemble trichobothria in other arachnid orders yet their function remains unknown. Thus, this study investigates whether these sensilla serve a mechanosensory function. Using electrophysiological and behavioral assays on Eremobates pallipes (Eremobatidae), we assessed the response of the elongated 4th leg sensilla to- (i) air particle movement and- (ii) air pressure changes. Air particle movement stimuli were generated using a speaker placed in the near field of the elongated sensilla that emitted low-frequency pure tones (10-1000 Hz). Air pressure stimuli involved forceful blowing on the sensilla. No response to air particle movement was observed, but a mechanosensory response to air pressure stimuli was detected. Electrophysiological data identified a fast-adapting and fast-recovering cell, and behavioral observations revealed a startle response. Our electrophysiology results suggest a mechanosensory role of elongated sensilla on the 4th walking legs of solifuge, indicating that although they are not sensitive enough to detect air particle movement stimuli, they can receive and respond to air pressure stimuli. Our behavioral experiments similarly show that these sensilla are not sensitive enough to detect air particle movement but respond to more forceful mechanosensory stimuli.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrophysiological and behavioral responses of elongated solifuge sensilla to mechanical stimuli.\",\"authors\":\"Pallabi Kundu, Mariela Oviedo-Diego, Franco Cargnelutti, R Ryan Jones, Erika Garcia, Eileen A Hebets, Douglas D Gaffin\",\"doi\":\"10.1007/s00359-025-01731-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A fundamental understanding of animal sensory systems is crucial for comprehending their interactions with the environment and with other conspecifics. However, knowledge gaps persist, particularly in arachnids like the order Solifugae. While certain solifuge setae and palpal papillae have been studied structurally and electrophysiologically, providing evidence of chemoreception and mechanoreception, the sensilla on their walking legs remain unexplored. Notably, elongated sensilla on the femur and tibia of the 4th walking legs resemble trichobothria in other arachnid orders yet their function remains unknown. Thus, this study investigates whether these sensilla serve a mechanosensory function. Using electrophysiological and behavioral assays on Eremobates pallipes (Eremobatidae), we assessed the response of the elongated 4th leg sensilla to- (i) air particle movement and- (ii) air pressure changes. Air particle movement stimuli were generated using a speaker placed in the near field of the elongated sensilla that emitted low-frequency pure tones (10-1000 Hz). Air pressure stimuli involved forceful blowing on the sensilla. No response to air particle movement was observed, but a mechanosensory response to air pressure stimuli was detected. Electrophysiological data identified a fast-adapting and fast-recovering cell, and behavioral observations revealed a startle response. Our electrophysiology results suggest a mechanosensory role of elongated sensilla on the 4th walking legs of solifuge, indicating that although they are not sensitive enough to detect air particle movement stimuli, they can receive and respond to air pressure stimuli. Our behavioral experiments similarly show that these sensilla are not sensitive enough to detect air particle movement but respond to more forceful mechanosensory stimuli.</p>\",\"PeriodicalId\":54862,\"journal\":{\"name\":\"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1007/s00359-025-01731-y\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s00359-025-01731-y","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

对动物感觉系统的基本理解对于理解它们与环境和其他同种生物的相互作用至关重要。然而,知识差距仍然存在,特别是在像孤独目这样的蛛形纲动物中。虽然某些孤立的刚毛和触须乳头已经在结构和电生理学上进行了研究,提供了化学接受和机械接受的证据,但它们行走腿上的感受器仍未被探索。值得注意的是,第4条行走腿的股骨和胫骨上的细长感受器类似于其他蛛形纲动物的毛管,但它们的功能尚不清楚。因此,本研究探讨了这些感受器是否具有机械感觉功能。通过电生理和行为分析,我们评估了细长的第四腿感受器对空气颗粒运动和气压变化的反应。空气粒子运动刺激是通过放置在细长感受器近场的扬声器产生的,该扬声器发出低频纯音(10-1000 Hz)。气压刺激包括对感受器的强力吹气。没有观察到对空气颗粒运动的反应,但检测到对气压刺激的机械感觉反应。电生理数据发现了一个快速适应和快速恢复的细胞,行为观察显示了惊吓反应。我们的电生理学结果表明,在孤独的第4条行走腿上,细长的感受器具有机械感觉作用,这表明尽管它们对空气颗粒运动刺激不够敏感,但它们可以接收并响应空气压力刺激。我们的行为实验同样表明,这些感受器不够敏感,无法探测到空气颗粒的运动,但会对更强的机械感官刺激做出反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrophysiological and behavioral responses of elongated solifuge sensilla to mechanical stimuli.

A fundamental understanding of animal sensory systems is crucial for comprehending their interactions with the environment and with other conspecifics. However, knowledge gaps persist, particularly in arachnids like the order Solifugae. While certain solifuge setae and palpal papillae have been studied structurally and electrophysiologically, providing evidence of chemoreception and mechanoreception, the sensilla on their walking legs remain unexplored. Notably, elongated sensilla on the femur and tibia of the 4th walking legs resemble trichobothria in other arachnid orders yet their function remains unknown. Thus, this study investigates whether these sensilla serve a mechanosensory function. Using electrophysiological and behavioral assays on Eremobates pallipes (Eremobatidae), we assessed the response of the elongated 4th leg sensilla to- (i) air particle movement and- (ii) air pressure changes. Air particle movement stimuli were generated using a speaker placed in the near field of the elongated sensilla that emitted low-frequency pure tones (10-1000 Hz). Air pressure stimuli involved forceful blowing on the sensilla. No response to air particle movement was observed, but a mechanosensory response to air pressure stimuli was detected. Electrophysiological data identified a fast-adapting and fast-recovering cell, and behavioral observations revealed a startle response. Our electrophysiology results suggest a mechanosensory role of elongated sensilla on the 4th walking legs of solifuge, indicating that although they are not sensitive enough to detect air particle movement stimuli, they can receive and respond to air pressure stimuli. Our behavioral experiments similarly show that these sensilla are not sensitive enough to detect air particle movement but respond to more forceful mechanosensory stimuli.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
14.30%
发文量
67
审稿时长
1 months
期刊介绍: The Journal of Comparative Physiology A welcomes original articles, short reviews, and short communications in the following fields: - Neurobiology and neuroethology - Sensory physiology and ecology - Physiological and hormonal basis of behavior - Communication, orientation, and locomotion - Functional imaging and neuroanatomy Contributions should add to our understanding of mechanisms and not be purely descriptive. The level of organization addressed may be organismic, cellular, or molecular. Colour figures are free in print and online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信