揭示多种原发癌症易感性的遗传格局。

IF 3.3 Q2 GENETICS & HEREDITY
Pooja Middha, Linda Kachuri, Jovia L Nierenberg, Rebecca E Graff, Taylor B Cavazos, Thomas J Hoffmann, Jie Zhang, Stacey Alexeeff, Laurel Habel, Douglas A Corley, Stephen Van Den Eeden, Lawrence H Kushi, Elad Ziv, Lori C Sakoda, John S Witte
{"title":"揭示多种原发癌症易感性的遗传格局。","authors":"Pooja Middha, Linda Kachuri, Jovia L Nierenberg, Rebecca E Graff, Taylor B Cavazos, Thomas J Hoffmann, Jie Zhang, Stacey Alexeeff, Laurel Habel, Douglas A Corley, Stephen Van Den Eeden, Lawrence H Kushi, Elad Ziv, Lori C Sakoda, John S Witte","doi":"10.1016/j.xhgg.2025.100413","DOIUrl":null,"url":null,"abstract":"<p><p>With advances in cancer screening and treatment, there is a growing population of cancer survivors who may develop subsequent primary cancers. While hereditary cancer syndromes account for only a portion of multiple cancer cases, we sought to explore the role of common genetic variation in susceptibility to multiple primary tumors. We conducted a cross-ancestry genome-wide association study (GWAS) and transcriptome-wide association study (TWAS) of 10,983 individuals with multiple primary cancers, 84,475 individuals with single cancer, and 420,944 cancer-free controls from two large-scale studies. Our GWAS identified six lead variants across five genomic regions that were significantly associated (p < 5 × 10<sup>-8</sup>) with the risk of developing multiple primary tumors (overall and invasive) relative to cancer-free controls (at 3q26, 8q24, 10q24, 11q13.3, and 17p13). We also found one variant significantly associated with multiple cancers when compared with single cancer cases (at 22q13.1). Multi-tissue TWAS detected associations with genes involved in telomere maintenance in two of these regions (ACTRT3 in 3q26 and SLK and STN1 in 10q24) and the development of multiple cancers. Additionally, the TWAS also identified several novel genes associated with multiple cancers, including two immune-related genes, IRF4 and TNFRSF6B. Telomere maintenance and immune dysregulation emerge as central, common pathways influencing susceptibility to multiple cancers. These findings underscore the importance of exploring shared mechanisms in carcinogenesis, offering insights for targeted prevention and intervention strategies.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100413"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910107/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unraveling the genetic landscape of susceptibility to multiple primary cancers.\",\"authors\":\"Pooja Middha, Linda Kachuri, Jovia L Nierenberg, Rebecca E Graff, Taylor B Cavazos, Thomas J Hoffmann, Jie Zhang, Stacey Alexeeff, Laurel Habel, Douglas A Corley, Stephen Van Den Eeden, Lawrence H Kushi, Elad Ziv, Lori C Sakoda, John S Witte\",\"doi\":\"10.1016/j.xhgg.2025.100413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With advances in cancer screening and treatment, there is a growing population of cancer survivors who may develop subsequent primary cancers. While hereditary cancer syndromes account for only a portion of multiple cancer cases, we sought to explore the role of common genetic variation in susceptibility to multiple primary tumors. We conducted a cross-ancestry genome-wide association study (GWAS) and transcriptome-wide association study (TWAS) of 10,983 individuals with multiple primary cancers, 84,475 individuals with single cancer, and 420,944 cancer-free controls from two large-scale studies. Our GWAS identified six lead variants across five genomic regions that were significantly associated (p < 5 × 10<sup>-8</sup>) with the risk of developing multiple primary tumors (overall and invasive) relative to cancer-free controls (at 3q26, 8q24, 10q24, 11q13.3, and 17p13). We also found one variant significantly associated with multiple cancers when compared with single cancer cases (at 22q13.1). Multi-tissue TWAS detected associations with genes involved in telomere maintenance in two of these regions (ACTRT3 in 3q26 and SLK and STN1 in 10q24) and the development of multiple cancers. Additionally, the TWAS also identified several novel genes associated with multiple cancers, including two immune-related genes, IRF4 and TNFRSF6B. Telomere maintenance and immune dysregulation emerge as central, common pathways influencing susceptibility to multiple cancers. These findings underscore the importance of exploring shared mechanisms in carcinogenesis, offering insights for targeted prevention and intervention strategies.</p>\",\"PeriodicalId\":34530,\"journal\":{\"name\":\"HGG Advances\",\"volume\":\" \",\"pages\":\"100413\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910107/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HGG Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xhgg.2025.100413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HGG Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xhgg.2025.100413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

随着癌症筛查和治疗的进步,越来越多的癌症幸存者可能会发展成原发性癌症。虽然遗传性癌症综合征仅占多发性癌症病例的一部分,但我们试图探索常见遗传变异在多发性原发肿瘤易感性中的作用。我们进行了一项跨祖先全基因组关联研究(GWAS)和转录组全关联研究(TWAS),研究对象包括10983名多原发癌症患者,84475名单一癌症患者,以及来自两项大规模研究的420944名无癌症对照。我们的GWAS鉴定了5个基因组区域的6个先导变异,与无癌对照(3q26、8q24、10q24、11q13.3和17p13)相比,它们与发生多发性原发性肿瘤(整体和侵袭性)的风险显著相关(P-8)。我们还发现,与单一癌症病例相比,一个变异与多种癌症显著相关(22q13.1)。多组织TWAS检测到其中两个区域(3q26中的ACTRT3和10q24中的SLK和STN1)与参与端粒维持的基因和多种癌症的发展相关。此外,TWAS还发现了几个与多种癌症相关的新基因,包括两个免疫相关基因,IRF4和TNFRSF6B。端粒维持和免疫失调是影响多种癌症易感性的重要途径。这些发现强调了探索致癌机制的重要性,为有针对性的预防和干预策略提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling the genetic landscape of susceptibility to multiple primary cancers.

With advances in cancer screening and treatment, there is a growing population of cancer survivors who may develop subsequent primary cancers. While hereditary cancer syndromes account for only a portion of multiple cancer cases, we sought to explore the role of common genetic variation in susceptibility to multiple primary tumors. We conducted a cross-ancestry genome-wide association study (GWAS) and transcriptome-wide association study (TWAS) of 10,983 individuals with multiple primary cancers, 84,475 individuals with single cancer, and 420,944 cancer-free controls from two large-scale studies. Our GWAS identified six lead variants across five genomic regions that were significantly associated (p < 5 × 10-8) with the risk of developing multiple primary tumors (overall and invasive) relative to cancer-free controls (at 3q26, 8q24, 10q24, 11q13.3, and 17p13). We also found one variant significantly associated with multiple cancers when compared with single cancer cases (at 22q13.1). Multi-tissue TWAS detected associations with genes involved in telomere maintenance in two of these regions (ACTRT3 in 3q26 and SLK and STN1 in 10q24) and the development of multiple cancers. Additionally, the TWAS also identified several novel genes associated with multiple cancers, including two immune-related genes, IRF4 and TNFRSF6B. Telomere maintenance and immune dysregulation emerge as central, common pathways influencing susceptibility to multiple cancers. These findings underscore the importance of exploring shared mechanisms in carcinogenesis, offering insights for targeted prevention and intervention strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
HGG Advances
HGG Advances Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
4.30
自引率
4.50%
发文量
69
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信