TB27转录组学模型预测结核分枝杆菌培养转化。

Q1 Medicine
Pathogens and Immunity Pub Date : 2025-01-29 eCollection Date: 2024-01-01 DOI:10.20411/pai.v10i1.770
Maja Reimann, Korkut Avsar, Andrew R DiNardo, Torsten Goldmann, Gunar Günther, Michael Hoelscher, Elmira Ibraim, Barbara Kalsdorf, Stefan H E Kaufmann, Niklas Köhler, Anna M Mandalakas, Florian P Maurer, Marius Müller, Dörte Nitschkowski, Ioana D Olaru, Cristina Popa, Andrea Rachow, Thierry Rolling, Helmut J F Salzer, Patricia Sanchez-Carballo, Maren Schuhmann, Dagmar Schaub, Victor Spinu, Elena Terhalle, Markus Unnewehr, Nika J Zielinski, Jan Heyckendorf, Christoph Lange
{"title":"TB27转录组学模型预测结核分枝杆菌培养转化。","authors":"Maja Reimann, Korkut Avsar, Andrew R DiNardo, Torsten Goldmann, Gunar Günther, Michael Hoelscher, Elmira Ibraim, Barbara Kalsdorf, Stefan H E Kaufmann, Niklas Köhler, Anna M Mandalakas, Florian P Maurer, Marius Müller, Dörte Nitschkowski, Ioana D Olaru, Cristina Popa, Andrea Rachow, Thierry Rolling, Helmut J F Salzer, Patricia Sanchez-Carballo, Maren Schuhmann, Dagmar Schaub, Victor Spinu, Elena Terhalle, Markus Unnewehr, Nika J Zielinski, Jan Heyckendorf, Christoph Lange","doi":"10.20411/pai.v10i1.770","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale: </strong>Treatment monitoring of tuberculosis patients is complicated by a slow growth rate of <i>Mycobacterium tuberculosis</i>. Recently, host RNA signatures have been used to monitor the response to tuberculosis treatment.</p><p><strong>Objective: </strong>Identifying and validating a whole blood-based RNA signature model to predict microbiological treatment responses in patients on tuberculosis therapy.</p><p><strong>Methods: </strong>Using a multi-step machine learning algorithm to identify an RNA-based algorithm to predict the remaining time to culture conversion at flexible time points during anti-tuberculosis therapy.</p><p><strong>Results: </strong>The identification cohort included 149 patients split into a training and a test cohort, to develop a multistep algorithm consisting of 27 genes (TB27) for predicting the remaining time to culture conversion (TCC) at any given time. In the test dataset, predicted TCC and observed TCC achieved a correlation coefficient of <i>r</i>=0.98. An external validation cohort of 34 patients shows a correlation between predicted and observed days to TCC also of <i>r</i>=0.98.</p><p><strong>Conclusion: </strong>We identified and validated a whole blood-based RNA signature (TB27) that demonstrates an excellent agreement between predicted and observed times to <i>M. tuberculosis</i> culture conversion during tuberculosis therapy. TB27 is a potential useful biomarker for anti-tuberculosis drug development and for prediction of treatment responses in clinical practice.</p>","PeriodicalId":36419,"journal":{"name":"Pathogens and Immunity","volume":"10 1","pages":"120-139"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792529/pdf/","citationCount":"0","resultStr":"{\"title\":\"The TB27 Transcriptomic Model for Predicting <i>Mycobacterium tuberculosis</i> Culture Conversion.\",\"authors\":\"Maja Reimann, Korkut Avsar, Andrew R DiNardo, Torsten Goldmann, Gunar Günther, Michael Hoelscher, Elmira Ibraim, Barbara Kalsdorf, Stefan H E Kaufmann, Niklas Köhler, Anna M Mandalakas, Florian P Maurer, Marius Müller, Dörte Nitschkowski, Ioana D Olaru, Cristina Popa, Andrea Rachow, Thierry Rolling, Helmut J F Salzer, Patricia Sanchez-Carballo, Maren Schuhmann, Dagmar Schaub, Victor Spinu, Elena Terhalle, Markus Unnewehr, Nika J Zielinski, Jan Heyckendorf, Christoph Lange\",\"doi\":\"10.20411/pai.v10i1.770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Rationale: </strong>Treatment monitoring of tuberculosis patients is complicated by a slow growth rate of <i>Mycobacterium tuberculosis</i>. Recently, host RNA signatures have been used to monitor the response to tuberculosis treatment.</p><p><strong>Objective: </strong>Identifying and validating a whole blood-based RNA signature model to predict microbiological treatment responses in patients on tuberculosis therapy.</p><p><strong>Methods: </strong>Using a multi-step machine learning algorithm to identify an RNA-based algorithm to predict the remaining time to culture conversion at flexible time points during anti-tuberculosis therapy.</p><p><strong>Results: </strong>The identification cohort included 149 patients split into a training and a test cohort, to develop a multistep algorithm consisting of 27 genes (TB27) for predicting the remaining time to culture conversion (TCC) at any given time. In the test dataset, predicted TCC and observed TCC achieved a correlation coefficient of <i>r</i>=0.98. An external validation cohort of 34 patients shows a correlation between predicted and observed days to TCC also of <i>r</i>=0.98.</p><p><strong>Conclusion: </strong>We identified and validated a whole blood-based RNA signature (TB27) that demonstrates an excellent agreement between predicted and observed times to <i>M. tuberculosis</i> culture conversion during tuberculosis therapy. TB27 is a potential useful biomarker for anti-tuberculosis drug development and for prediction of treatment responses in clinical practice.</p>\",\"PeriodicalId\":36419,\"journal\":{\"name\":\"Pathogens and Immunity\",\"volume\":\"10 1\",\"pages\":\"120-139\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792529/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathogens and Immunity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20411/pai.v10i1.770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens and Immunity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20411/pai.v10i1.770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

理由:结核病患者的治疗监测因结核分枝杆菌生长缓慢而复杂化。最近,宿主RNA标记已被用于监测对结核病治疗的反应。目的:鉴定和验证基于全血的RNA标记模型,以预测结核病治疗患者的微生物治疗反应。方法:采用多步机器学习算法,确定一种基于rna的算法,预测抗结核治疗中灵活时间点的剩余培养转化时间。结果:鉴定队列包括149例患者,分为训练队列和测试队列,开发由27个基因(TB27)组成的多步算法,用于预测任何给定时间的剩余培养转化时间(TCC)。在测试数据集中,预测TCC与观测TCC的相关系数r=0.98。34例患者的外部验证队列显示,预测和观察TCC天数之间的相关性也为r=0.98。结论:我们鉴定并验证了基于全血的RNA标记(TB27),该标记在结核病治疗期间预测和观察到的结核分枝杆菌培养转化时间之间具有良好的一致性。TB27是抗结核药物开发和临床治疗反应预测的潜在有用生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The TB27 Transcriptomic Model for Predicting Mycobacterium tuberculosis Culture Conversion.

Rationale: Treatment monitoring of tuberculosis patients is complicated by a slow growth rate of Mycobacterium tuberculosis. Recently, host RNA signatures have been used to monitor the response to tuberculosis treatment.

Objective: Identifying and validating a whole blood-based RNA signature model to predict microbiological treatment responses in patients on tuberculosis therapy.

Methods: Using a multi-step machine learning algorithm to identify an RNA-based algorithm to predict the remaining time to culture conversion at flexible time points during anti-tuberculosis therapy.

Results: The identification cohort included 149 patients split into a training and a test cohort, to develop a multistep algorithm consisting of 27 genes (TB27) for predicting the remaining time to culture conversion (TCC) at any given time. In the test dataset, predicted TCC and observed TCC achieved a correlation coefficient of r=0.98. An external validation cohort of 34 patients shows a correlation between predicted and observed days to TCC also of r=0.98.

Conclusion: We identified and validated a whole blood-based RNA signature (TB27) that demonstrates an excellent agreement between predicted and observed times to M. tuberculosis culture conversion during tuberculosis therapy. TB27 is a potential useful biomarker for anti-tuberculosis drug development and for prediction of treatment responses in clinical practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pathogens and Immunity
Pathogens and Immunity Medicine-Infectious Diseases
CiteScore
10.60
自引率
0.00%
发文量
16
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信