台湾汉族多基因高度预测。

IF 4.7 2区 医学 Q1 GENETICS & HEREDITY
Chih-Hao Chang, Che-Yu Chou, Timothy G Raben, Shih-Ann Chen, Yuh-Jyh Jong, Jeng-Yih Wu, Shun-Fa Yang, Hsiang-Cheng Chen, Yen-Lin Chen, Ming Chen, Gwo-Chin Ma, Chih-Yang Huang, Tso-Fu Wang, Sing-Lian Lee, Chen-Fang Hung, See-Tong Pang, Erik Widen, Yao-Ming Chang, Erh-Chan Yeh, Chun-Yu Wei, Chien-Hsiun Chen, Stephen D H Hsu, Pui-Yan Kwok
{"title":"台湾汉族多基因高度预测。","authors":"Chih-Hao Chang, Che-Yu Chou, Timothy G Raben, Shih-Ann Chen, Yuh-Jyh Jong, Jeng-Yih Wu, Shun-Fa Yang, Hsiang-Cheng Chen, Yen-Lin Chen, Ming Chen, Gwo-Chin Ma, Chih-Yang Huang, Tso-Fu Wang, Sing-Lian Lee, Chen-Fang Hung, See-Tong Pang, Erik Widen, Yao-Ming Chang, Erh-Chan Yeh, Chun-Yu Wei, Chien-Hsiun Chen, Stephen D H Hsu, Pui-Yan Kwok","doi":"10.1038/s41525-025-00468-6","DOIUrl":null,"url":null,"abstract":"<p><p>Human height prediction based on genetic factors alone shows positive correlation, but predictors developed for one population perform less well when applied to population of different ancestries. In this study, we evaluated the utility of incorporating non-genetic factors in height predictors for the Han Chinese population in Taiwan. We analyzed data from 78,719 Taiwan Biobank (TWB) participants and 40,641 Taiwan Precision Medicine Initiative (TPMI) participants using genome-wide association study and multivariable linear regression least absolute shrinkage and selection operator (LASSO) methods to incorporate genetic and non-genetic factors for height prediction. Our findings establish that combining birth year (as a surrogate for nutritional status), age at measurement (to account for age-associated effects on height), and genetic profile data improves the accuracy of height prediction. This method enhances the correlation between predicted and actual height and significantly reduces the discrepancies between predicted and actual height in both males and females.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"10 1","pages":"7"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799370/pdf/","citationCount":"0","resultStr":"{\"title\":\"Polygenic height prediction for the Han Chinese in Taiwan.\",\"authors\":\"Chih-Hao Chang, Che-Yu Chou, Timothy G Raben, Shih-Ann Chen, Yuh-Jyh Jong, Jeng-Yih Wu, Shun-Fa Yang, Hsiang-Cheng Chen, Yen-Lin Chen, Ming Chen, Gwo-Chin Ma, Chih-Yang Huang, Tso-Fu Wang, Sing-Lian Lee, Chen-Fang Hung, See-Tong Pang, Erik Widen, Yao-Ming Chang, Erh-Chan Yeh, Chun-Yu Wei, Chien-Hsiun Chen, Stephen D H Hsu, Pui-Yan Kwok\",\"doi\":\"10.1038/s41525-025-00468-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human height prediction based on genetic factors alone shows positive correlation, but predictors developed for one population perform less well when applied to population of different ancestries. In this study, we evaluated the utility of incorporating non-genetic factors in height predictors for the Han Chinese population in Taiwan. We analyzed data from 78,719 Taiwan Biobank (TWB) participants and 40,641 Taiwan Precision Medicine Initiative (TPMI) participants using genome-wide association study and multivariable linear regression least absolute shrinkage and selection operator (LASSO) methods to incorporate genetic and non-genetic factors for height prediction. Our findings establish that combining birth year (as a surrogate for nutritional status), age at measurement (to account for age-associated effects on height), and genetic profile data improves the accuracy of height prediction. This method enhances the correlation between predicted and actual height and significantly reduces the discrepancies between predicted and actual height in both males and females.</p>\",\"PeriodicalId\":19273,\"journal\":{\"name\":\"NPJ Genomic Medicine\",\"volume\":\"10 1\",\"pages\":\"7\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799370/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Genomic Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41525-025-00468-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41525-025-00468-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

仅基于遗传因素的人类身高预测显示出正相关,但当应用于不同祖先的人群时,针对一个群体开发的预测结果表现不佳。在本研究中,我们评估将非遗传因素纳入台湾汉族人口身高预测因子的效用。本研究采用全基因组关联研究、多元线性回归最小绝对收缩和选择算子(LASSO)方法,结合遗传和非遗传因素对身高进行预测,分析了78719名台湾生物样本库(TWB)和40641名台湾精准医疗计划(TPMI)参与者的数据。我们的研究结果表明,结合出生年份(作为营养状况的替代指标)、测量年龄(考虑年龄对身高的相关影响)和基因谱数据,可以提高身高预测的准确性。该方法增强了预测身高与实际身高之间的相关性,显著降低了男女预测身高与实际身高之间的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polygenic height prediction for the Han Chinese in Taiwan.

Human height prediction based on genetic factors alone shows positive correlation, but predictors developed for one population perform less well when applied to population of different ancestries. In this study, we evaluated the utility of incorporating non-genetic factors in height predictors for the Han Chinese population in Taiwan. We analyzed data from 78,719 Taiwan Biobank (TWB) participants and 40,641 Taiwan Precision Medicine Initiative (TPMI) participants using genome-wide association study and multivariable linear regression least absolute shrinkage and selection operator (LASSO) methods to incorporate genetic and non-genetic factors for height prediction. Our findings establish that combining birth year (as a surrogate for nutritional status), age at measurement (to account for age-associated effects on height), and genetic profile data improves the accuracy of height prediction. This method enhances the correlation between predicted and actual height and significantly reduces the discrepancies between predicted and actual height in both males and females.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NPJ Genomic Medicine
NPJ Genomic Medicine Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
1.90%
发文量
67
审稿时长
17 weeks
期刊介绍: npj Genomic Medicine is an international, peer-reviewed journal dedicated to publishing the most important scientific advances in all aspects of genomics and its application in the practice of medicine. The journal defines genomic medicine as "diagnosis, prognosis, prevention and/or treatment of disease and disorders of the mind and body, using approaches informed or enabled by knowledge of the genome and the molecules it encodes." Relevant and high-impact papers that encompass studies of individuals, families, or populations are considered for publication. An emphasis will include coupling detailed phenotype and genome sequencing information, both enabled by new technologies and informatics, to delineate the underlying aetiology of disease. Clinical recommendations and/or guidelines of how that data should be used in the clinical management of those patients in the study, and others, are also encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信