II/R损伤中增强的代谢调节:比较多途径和单途径肠内营养。

IF 3.2 3区 医学 Q2 NUTRITION & DIETETICS
Jianfeng Duan PhD, Jiali Liu PhD, Jiawen Chen MMed, Suwan Qian MMed, Xinran Liang MMed, Yanyu Han MMed, Beiyuan Zhang MMed, Tao Gao PhD, Gang Wang PhD, Xiaoyao Li PhD, Wenkui Yu PhD
{"title":"II/R损伤中增强的代谢调节:比较多途径和单途径肠内营养。","authors":"Jianfeng Duan PhD,&nbsp;Jiali Liu PhD,&nbsp;Jiawen Chen MMed,&nbsp;Suwan Qian MMed,&nbsp;Xinran Liang MMed,&nbsp;Yanyu Han MMed,&nbsp;Beiyuan Zhang MMed,&nbsp;Tao Gao PhD,&nbsp;Gang Wang PhD,&nbsp;Xiaoyao Li PhD,&nbsp;Wenkui Yu PhD","doi":"10.1002/jpen.2726","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>This study aimed to compare the effects of enteral nutrition (EN) administered via multiroute or via monoroute on metabolic regulation in intestinal ischemia-reperfusion (II/R) injury rat model.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>The rats were divided into sham operation and II/R injury groups. The rats in each group were further treated with either multiroute or monoroute EN. Rats subjected to multiroute EN were administered a continuous infusion of 30 kcal/kg × day of nutrition via a gastric tube and additionally provided with 0.5 g of standard rat forage for oral intake q8h (for a total of approximately 20 kcal/kg × day) each day. Conversely, rats on the monoroute regimen underwent a continuous infusion of 50 kcal/kg × day of EN through a gastric tube. Hypercatabolism was evaluated by assessing skeletal muscle protein synthesis and atrophy, and insulin resistance. Moreover, serum gastrointestinal hormone levels, hypothalamic ghrelin, and neuropeptide pro-opiomelanocortin (POMC) were detected.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>In rats subjected to II/R injury, multiroute EN more effectively restored serum and hypothalamic ghrelin levels, decreased the expression of the POMC neuropeptide, decreased skeletal muscle atrophy, and enhanced skeletal muscle synthesis. These effects collectively contributed to a reduction in muscle wasting, an improvement in hypercatabolic status, and a mitigation of body weight loss.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Compared with monoroute nutrition, multiroute EN may further improve hypercatabolic metabolism, reduce muscle wasting, and prevent weight loss in II/R injury rat. This research suggested that an optimized multiroute EN regimen is superior to the monoroute EN approach.</p>\n </section>\n </div>","PeriodicalId":16668,"journal":{"name":"Journal of Parenteral and Enteral Nutrition","volume":"49 3","pages":"379-388"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jpen.2726","citationCount":"0","resultStr":"{\"title\":\"Enhanced metabolic regulation in II/R injury: Comparing multiroute and monoroute enteral nutrition\",\"authors\":\"Jianfeng Duan PhD,&nbsp;Jiali Liu PhD,&nbsp;Jiawen Chen MMed,&nbsp;Suwan Qian MMed,&nbsp;Xinran Liang MMed,&nbsp;Yanyu Han MMed,&nbsp;Beiyuan Zhang MMed,&nbsp;Tao Gao PhD,&nbsp;Gang Wang PhD,&nbsp;Xiaoyao Li PhD,&nbsp;Wenkui Yu PhD\",\"doi\":\"10.1002/jpen.2726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objective</h3>\\n \\n <p>This study aimed to compare the effects of enteral nutrition (EN) administered via multiroute or via monoroute on metabolic regulation in intestinal ischemia-reperfusion (II/R) injury rat model.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>The rats were divided into sham operation and II/R injury groups. The rats in each group were further treated with either multiroute or monoroute EN. Rats subjected to multiroute EN were administered a continuous infusion of 30 kcal/kg × day of nutrition via a gastric tube and additionally provided with 0.5 g of standard rat forage for oral intake q8h (for a total of approximately 20 kcal/kg × day) each day. Conversely, rats on the monoroute regimen underwent a continuous infusion of 50 kcal/kg × day of EN through a gastric tube. Hypercatabolism was evaluated by assessing skeletal muscle protein synthesis and atrophy, and insulin resistance. Moreover, serum gastrointestinal hormone levels, hypothalamic ghrelin, and neuropeptide pro-opiomelanocortin (POMC) were detected.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>In rats subjected to II/R injury, multiroute EN more effectively restored serum and hypothalamic ghrelin levels, decreased the expression of the POMC neuropeptide, decreased skeletal muscle atrophy, and enhanced skeletal muscle synthesis. These effects collectively contributed to a reduction in muscle wasting, an improvement in hypercatabolic status, and a mitigation of body weight loss.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Compared with monoroute nutrition, multiroute EN may further improve hypercatabolic metabolism, reduce muscle wasting, and prevent weight loss in II/R injury rat. This research suggested that an optimized multiroute EN regimen is superior to the monoroute EN approach.</p>\\n </section>\\n </div>\",\"PeriodicalId\":16668,\"journal\":{\"name\":\"Journal of Parenteral and Enteral Nutrition\",\"volume\":\"49 3\",\"pages\":\"379-388\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jpen.2726\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Parenteral and Enteral Nutrition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jpen.2726\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parenteral and Enteral Nutrition","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jpen.2726","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0

摘要

目的:比较多途径和单途径肠内营养(EN)对肠缺血再灌注(II/R)损伤模型大鼠代谢调节的影响。方法:将大鼠分为假手术组和II/R损伤组。各组大鼠分别给予多路或单路EN治疗。给予多路EN的大鼠通过胃管连续输注30 kcal/kg × d的营养,另外给予0.5 g标准大鼠饲料,每天q8h口服(总计约20 kcal/kg × d)。相反,单路线方案的大鼠通过胃管连续输注50 kcal/kg × d的EN。通过评估骨骼肌蛋白合成、萎缩和胰岛素抵抗来评估高分解代谢。此外,检测血清胃肠激素水平、下丘脑胃饥饿素和神经肽促鸦片黑素皮质素(POMC)。结果:在II/R损伤大鼠中,多路EN更有效地恢复血清和下丘脑ghrelin水平,降低POMC神经肽的表达,减轻骨骼肌萎缩,增强骨骼肌合成。这些作用共同有助于减少肌肉萎缩,改善高分解代谢状态,减轻体重减轻。结论:与单路营养相比,多路EN可进一步改善II/R损伤大鼠的高分解代谢,减少肌肉萎缩,防止体重减轻。本研究表明,优化后的多路由网络方案优于单路由网络方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced metabolic regulation in II/R injury: Comparing multiroute and monoroute enteral nutrition

Enhanced metabolic regulation in II/R injury: Comparing multiroute and monoroute enteral nutrition

Objective

This study aimed to compare the effects of enteral nutrition (EN) administered via multiroute or via monoroute on metabolic regulation in intestinal ischemia-reperfusion (II/R) injury rat model.

Methods

The rats were divided into sham operation and II/R injury groups. The rats in each group were further treated with either multiroute or monoroute EN. Rats subjected to multiroute EN were administered a continuous infusion of 30 kcal/kg × day of nutrition via a gastric tube and additionally provided with 0.5 g of standard rat forage for oral intake q8h (for a total of approximately 20 kcal/kg × day) each day. Conversely, rats on the monoroute regimen underwent a continuous infusion of 50 kcal/kg × day of EN through a gastric tube. Hypercatabolism was evaluated by assessing skeletal muscle protein synthesis and atrophy, and insulin resistance. Moreover, serum gastrointestinal hormone levels, hypothalamic ghrelin, and neuropeptide pro-opiomelanocortin (POMC) were detected.

Results

In rats subjected to II/R injury, multiroute EN more effectively restored serum and hypothalamic ghrelin levels, decreased the expression of the POMC neuropeptide, decreased skeletal muscle atrophy, and enhanced skeletal muscle synthesis. These effects collectively contributed to a reduction in muscle wasting, an improvement in hypercatabolic status, and a mitigation of body weight loss.

Conclusion

Compared with monoroute nutrition, multiroute EN may further improve hypercatabolic metabolism, reduce muscle wasting, and prevent weight loss in II/R injury rat. This research suggested that an optimized multiroute EN regimen is superior to the monoroute EN approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
8.80%
发文量
161
审稿时长
6-12 weeks
期刊介绍: The Journal of Parenteral and Enteral Nutrition (JPEN) is the premier scientific journal of nutrition and metabolic support. It publishes original peer-reviewed studies that define the cutting edge of basic and clinical research in the field. It explores the science of optimizing the care of patients receiving enteral or IV therapies. Also included: reviews, techniques, brief reports, case reports, and abstracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信