骶髂炎的MRI图像半监督分割和放射组学特征分析诊断。

IF 3.3 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Lei Liu, Ruotao Zhong, Yuzhen Zhang, Haoyang Wan, Shuju Chen, Nanfeng Zhang, JingJing Liu, Wei Mei, Ruibin Huang
{"title":"骶髂炎的MRI图像半监督分割和放射组学特征分析诊断。","authors":"Lei Liu, Ruotao Zhong, Yuzhen Zhang, Haoyang Wan, Shuju Chen, Nanfeng Zhang, JingJing Liu, Wei Mei, Ruibin Huang","doi":"10.1002/jmri.29731","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sacroiliitis is a hallmark of ankylosing spondylitis (AS), and early detection plays an important role in managing the condition effectively. MRI is commonly used for diagnosing sacroiliitis, traditional methods often depend on subjective interpretation or limited automation which can introduce variability in diagnoses. The integration of semi-supervised segmentation and radiomics features may reduce reliance on expert interpretation and the need for large annotated datasets, potentially enhancing diagnostic workflows.</p><p><strong>Purpose: </strong>To develop a diagnostic model for sacroiliitis and bone marrow edema (BME) using semi-supervised segmentation and radiomics analysis of MRI images.</p><p><strong>Study type: </strong>Retrospective cohort study.</p><p><strong>Population: </strong>A total of 257 patients (161 males, 93 females; age 11-74 years), including 155 sacroiliitis and 175 BME patients. A total of 514 sacroiliac joint (SIJ) MRI images are analyzed, with 359 used for training and 155 for testing.</p><p><strong>Field strength/sequence: </strong>3.0 T, spin echo T1-weighted imaging (T1WI) and short-tau inversion recovery (STIR).</p><p><strong>Assessment: </strong>SIJ segmentation is automated using the semi-supervised segmentation-based Unimatch framework. Manual delineation of SIJ regions of interest (ROIs) on T1WI images by an experienced radiologist (W.M., 10-year experience) served as the reference standard for segmentation performance evaluation. Radiomics features from T1WI and STIR are used to train machine learning models, including support vector machine (SVM), logistic regression (LR), and light gradient boosting machine (LightGBM), for sacroiliitis and BME detection. Performance is assessed using area under the curve (AUC), sensitivity, specificity, and accuracy. The Dice coefficient is used to assess the performance of the semi-supervised segmentation model on SIJ segmentation.</p><p><strong>Statistical tests: </strong>Performance is evaluated using receiver operating characteristic (ROC) curves and decision curve analysis (DCA).</p><p><strong>Result: </strong>The Unimatch model achieves an average Dice coefficient of 0.859 for SIJ segmentation. AUCs for sacroiliitis detection are 0.84 (LR), 0.86 (SVM), and 0.78 (LightGBM), while for BME detection, AUCs are 0.73 (LR), 0.76 (SVM), and 0.70 (LightGBM).</p><p><strong>Data conclusion: </strong>This study demonstrates that semi-supervised segmentation combined with radiomics features and machine learning models provides a promising approach for diagnosis of sacroiliitis and BME.</p><p><strong>Plain language summary: </strong>This study aimed to improve the diagnosis of sacroiliitis and bone marrow edema in patients with ankylosing spondylitis. The researchers used a method that automatically segments MRI images and analyzes features from those images. By applying machine learning, they created models to help detect sacroiliitis and bone marrow edema more accurately. The results show that this approach can effectively assist in identifying these conditions, with the best accuracy for sacroiliitis and bone marrow edema reaching 81.2% and 74.2%, respectively. This method could help doctors make better decisions, offering a promising tool for improving diagnosis in clinical settings.</p><p><strong>Level of evidence: </strong>3 TECHNICAL EFFICACY: Stage 2.</p>","PeriodicalId":16140,"journal":{"name":"Journal of Magnetic Resonance Imaging","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnosis of Sacroiliitis Through Semi-Supervised Segmentation and Radiomics Feature Analysis of MRI Images.\",\"authors\":\"Lei Liu, Ruotao Zhong, Yuzhen Zhang, Haoyang Wan, Shuju Chen, Nanfeng Zhang, JingJing Liu, Wei Mei, Ruibin Huang\",\"doi\":\"10.1002/jmri.29731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Sacroiliitis is a hallmark of ankylosing spondylitis (AS), and early detection plays an important role in managing the condition effectively. MRI is commonly used for diagnosing sacroiliitis, traditional methods often depend on subjective interpretation or limited automation which can introduce variability in diagnoses. The integration of semi-supervised segmentation and radiomics features may reduce reliance on expert interpretation and the need for large annotated datasets, potentially enhancing diagnostic workflows.</p><p><strong>Purpose: </strong>To develop a diagnostic model for sacroiliitis and bone marrow edema (BME) using semi-supervised segmentation and radiomics analysis of MRI images.</p><p><strong>Study type: </strong>Retrospective cohort study.</p><p><strong>Population: </strong>A total of 257 patients (161 males, 93 females; age 11-74 years), including 155 sacroiliitis and 175 BME patients. A total of 514 sacroiliac joint (SIJ) MRI images are analyzed, with 359 used for training and 155 for testing.</p><p><strong>Field strength/sequence: </strong>3.0 T, spin echo T1-weighted imaging (T1WI) and short-tau inversion recovery (STIR).</p><p><strong>Assessment: </strong>SIJ segmentation is automated using the semi-supervised segmentation-based Unimatch framework. Manual delineation of SIJ regions of interest (ROIs) on T1WI images by an experienced radiologist (W.M., 10-year experience) served as the reference standard for segmentation performance evaluation. Radiomics features from T1WI and STIR are used to train machine learning models, including support vector machine (SVM), logistic regression (LR), and light gradient boosting machine (LightGBM), for sacroiliitis and BME detection. Performance is assessed using area under the curve (AUC), sensitivity, specificity, and accuracy. The Dice coefficient is used to assess the performance of the semi-supervised segmentation model on SIJ segmentation.</p><p><strong>Statistical tests: </strong>Performance is evaluated using receiver operating characteristic (ROC) curves and decision curve analysis (DCA).</p><p><strong>Result: </strong>The Unimatch model achieves an average Dice coefficient of 0.859 for SIJ segmentation. AUCs for sacroiliitis detection are 0.84 (LR), 0.86 (SVM), and 0.78 (LightGBM), while for BME detection, AUCs are 0.73 (LR), 0.76 (SVM), and 0.70 (LightGBM).</p><p><strong>Data conclusion: </strong>This study demonstrates that semi-supervised segmentation combined with radiomics features and machine learning models provides a promising approach for diagnosis of sacroiliitis and BME.</p><p><strong>Plain language summary: </strong>This study aimed to improve the diagnosis of sacroiliitis and bone marrow edema in patients with ankylosing spondylitis. The researchers used a method that automatically segments MRI images and analyzes features from those images. By applying machine learning, they created models to help detect sacroiliitis and bone marrow edema more accurately. The results show that this approach can effectively assist in identifying these conditions, with the best accuracy for sacroiliitis and bone marrow edema reaching 81.2% and 74.2%, respectively. This method could help doctors make better decisions, offering a promising tool for improving diagnosis in clinical settings.</p><p><strong>Level of evidence: </strong>3 TECHNICAL EFFICACY: Stage 2.</p>\",\"PeriodicalId\":16140,\"journal\":{\"name\":\"Journal of Magnetic Resonance Imaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetic Resonance Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jmri.29731\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jmri.29731","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景:骶髂炎是强直性脊柱炎(AS)的标志,早期发现对有效控制病情起着重要作用。MRI通常用于诊断骶髂炎,传统方法往往依赖于主观解释或有限的自动化,这可能会导致诊断的可变性。半监督分割和放射组学特征的集成可以减少对专家解释的依赖和对大型注释数据集的需求,潜在地增强诊断工作流程。目的:利用MRI图像的半监督分割和放射组学分析建立骶髂炎和骨髓水肿(BME)的诊断模型。研究类型:回顾性队列研究。人群:257例患者(男性161例,女性93例;年龄11-74岁),包括155例骶髂炎和175例BME患者。分析了514张骶髂关节(SIJ) MRI图像,其中359张用于训练,155张用于测试。场强/序列:3.0 T,自旋回波t1加权成像(T1WI)和短tau反演恢复(STIR)。评估:SIJ分割使用基于半监督分割的Unimatch框架实现自动化。由经验丰富的放射科医生(wm, 10年经验)手动划定T1WI图像上的SIJ感兴趣区域(roi)作为分割性能评估的参考标准。来自T1WI和STIR的放射组学特征用于训练机器学习模型,包括支持向量机(SVM),逻辑回归(LR)和光梯度增强机(LightGBM),用于骶髂炎和BME检测。使用曲线下面积(AUC)、灵敏度、特异性和准确性来评估性能。用Dice系数来评价半监督分割模型在SIJ分割上的性能。统计检验:使用受试者工作特征(ROC)曲线和决策曲线分析(DCA)对性能进行评估。结果:Unimatch模型对SIJ分割的平均Dice系数为0.859。骶髂炎检测auc分别为0.84 (LR)、0.86 (SVM)和0.78 (LightGBM), BME检测auc分别为0.73 (LR)、0.76 (SVM)和0.70 (LightGBM)。数据结论:本研究表明,结合放射组学特征和机器学习模型的半监督分割为骶髂炎和BME的诊断提供了一种很有前景的方法。摘要:本研究旨在提高强直性脊柱炎患者骶髂炎和骨髓水肿的诊断水平。研究人员使用了一种自动分割核磁共振成像图像并分析这些图像特征的方法。通过应用机器学习,他们创建了帮助更准确地检测骶髂炎和骨髓水肿的模型。结果表明,该方法可以有效地辅助识别这些疾病,对骶髂炎和骨髓水肿的准确率最高,分别达到81.2%和74.2%。这种方法可以帮助医生做出更好的决定,为改善临床诊断提供了一种很有前途的工具。证据水平:3技术功效:第2阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagnosis of Sacroiliitis Through Semi-Supervised Segmentation and Radiomics Feature Analysis of MRI Images.

Background: Sacroiliitis is a hallmark of ankylosing spondylitis (AS), and early detection plays an important role in managing the condition effectively. MRI is commonly used for diagnosing sacroiliitis, traditional methods often depend on subjective interpretation or limited automation which can introduce variability in diagnoses. The integration of semi-supervised segmentation and radiomics features may reduce reliance on expert interpretation and the need for large annotated datasets, potentially enhancing diagnostic workflows.

Purpose: To develop a diagnostic model for sacroiliitis and bone marrow edema (BME) using semi-supervised segmentation and radiomics analysis of MRI images.

Study type: Retrospective cohort study.

Population: A total of 257 patients (161 males, 93 females; age 11-74 years), including 155 sacroiliitis and 175 BME patients. A total of 514 sacroiliac joint (SIJ) MRI images are analyzed, with 359 used for training and 155 for testing.

Field strength/sequence: 3.0 T, spin echo T1-weighted imaging (T1WI) and short-tau inversion recovery (STIR).

Assessment: SIJ segmentation is automated using the semi-supervised segmentation-based Unimatch framework. Manual delineation of SIJ regions of interest (ROIs) on T1WI images by an experienced radiologist (W.M., 10-year experience) served as the reference standard for segmentation performance evaluation. Radiomics features from T1WI and STIR are used to train machine learning models, including support vector machine (SVM), logistic regression (LR), and light gradient boosting machine (LightGBM), for sacroiliitis and BME detection. Performance is assessed using area under the curve (AUC), sensitivity, specificity, and accuracy. The Dice coefficient is used to assess the performance of the semi-supervised segmentation model on SIJ segmentation.

Statistical tests: Performance is evaluated using receiver operating characteristic (ROC) curves and decision curve analysis (DCA).

Result: The Unimatch model achieves an average Dice coefficient of 0.859 for SIJ segmentation. AUCs for sacroiliitis detection are 0.84 (LR), 0.86 (SVM), and 0.78 (LightGBM), while for BME detection, AUCs are 0.73 (LR), 0.76 (SVM), and 0.70 (LightGBM).

Data conclusion: This study demonstrates that semi-supervised segmentation combined with radiomics features and machine learning models provides a promising approach for diagnosis of sacroiliitis and BME.

Plain language summary: This study aimed to improve the diagnosis of sacroiliitis and bone marrow edema in patients with ankylosing spondylitis. The researchers used a method that automatically segments MRI images and analyzes features from those images. By applying machine learning, they created models to help detect sacroiliitis and bone marrow edema more accurately. The results show that this approach can effectively assist in identifying these conditions, with the best accuracy for sacroiliitis and bone marrow edema reaching 81.2% and 74.2%, respectively. This method could help doctors make better decisions, offering a promising tool for improving diagnosis in clinical settings.

Level of evidence: 3 TECHNICAL EFFICACY: Stage 2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.70
自引率
6.80%
发文量
494
审稿时长
2 months
期刊介绍: The Journal of Magnetic Resonance Imaging (JMRI) is an international journal devoted to the timely publication of basic and clinical research, educational and review articles, and other information related to the diagnostic applications of magnetic resonance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信