Mónica K Espinoza Cangahuala, Sundar Raj Krishnaswamy, Alexey V Kuevda, Maxim S Pshenichnikov, Thomas L C Jansen
{"title":"菁染料自组装的第一步:二聚化。","authors":"Mónica K Espinoza Cangahuala, Sundar Raj Krishnaswamy, Alexey V Kuevda, Maxim S Pshenichnikov, Thomas L C Jansen","doi":"10.1063/5.0237531","DOIUrl":null,"url":null,"abstract":"<p><p>Self-assembling amphiphilic cyanine dyes, such as C8S3, are promising candidates for energy storage and optoelectronic applications due to their efficient energy transport properties. C8S3 is known to self-assemble in water into double-walled J-aggregates. Thus far, the molecular self-assembly steps remain shrouded in mystery. Here, we employ a multiscale approach to unravel the first self-assembly step: dimerization. Our multiscale approach combines molecular dynamics simulations with quantum chemistry calculations to obtain a Frenkel exciton Hamiltonian, which we then use in spectral calculations to determine the absorption and two-dimensional electronic spectra of C8S3 monomer and dimer systems. We model these systems solvated in both water and methanol, validating our model with experiments in methanol solution. Our theoretical results predict a measurable anisotropy decay upon dimerization, which is experimentally confirmed. Our approach provides a tool for the experimental probing of dimerization. Moreover, molecular dynamics simulations reveal that the dimer conformation is characterized by the interaction between the hydrophobic aliphatic tails rather than the π-π stacking previously reported for other cyanine dyes. Our results pave the way for future research into the mechanism of molecular self-assembly in similar light-harvesting complexes, offering valuable insights for understanding and optimizing self-assembly processes for various (nano)technological applications.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 5","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The first step of cyanine dye self-assembly: Dimerization.\",\"authors\":\"Mónica K Espinoza Cangahuala, Sundar Raj Krishnaswamy, Alexey V Kuevda, Maxim S Pshenichnikov, Thomas L C Jansen\",\"doi\":\"10.1063/5.0237531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Self-assembling amphiphilic cyanine dyes, such as C8S3, are promising candidates for energy storage and optoelectronic applications due to their efficient energy transport properties. C8S3 is known to self-assemble in water into double-walled J-aggregates. Thus far, the molecular self-assembly steps remain shrouded in mystery. Here, we employ a multiscale approach to unravel the first self-assembly step: dimerization. Our multiscale approach combines molecular dynamics simulations with quantum chemistry calculations to obtain a Frenkel exciton Hamiltonian, which we then use in spectral calculations to determine the absorption and two-dimensional electronic spectra of C8S3 monomer and dimer systems. We model these systems solvated in both water and methanol, validating our model with experiments in methanol solution. Our theoretical results predict a measurable anisotropy decay upon dimerization, which is experimentally confirmed. Our approach provides a tool for the experimental probing of dimerization. Moreover, molecular dynamics simulations reveal that the dimer conformation is characterized by the interaction between the hydrophobic aliphatic tails rather than the π-π stacking previously reported for other cyanine dyes. Our results pave the way for future research into the mechanism of molecular self-assembly in similar light-harvesting complexes, offering valuable insights for understanding and optimizing self-assembly processes for various (nano)technological applications.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"162 5\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0237531\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0237531","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The first step of cyanine dye self-assembly: Dimerization.
Self-assembling amphiphilic cyanine dyes, such as C8S3, are promising candidates for energy storage and optoelectronic applications due to their efficient energy transport properties. C8S3 is known to self-assemble in water into double-walled J-aggregates. Thus far, the molecular self-assembly steps remain shrouded in mystery. Here, we employ a multiscale approach to unravel the first self-assembly step: dimerization. Our multiscale approach combines molecular dynamics simulations with quantum chemistry calculations to obtain a Frenkel exciton Hamiltonian, which we then use in spectral calculations to determine the absorption and two-dimensional electronic spectra of C8S3 monomer and dimer systems. We model these systems solvated in both water and methanol, validating our model with experiments in methanol solution. Our theoretical results predict a measurable anisotropy decay upon dimerization, which is experimentally confirmed. Our approach provides a tool for the experimental probing of dimerization. Moreover, molecular dynamics simulations reveal that the dimer conformation is characterized by the interaction between the hydrophobic aliphatic tails rather than the π-π stacking previously reported for other cyanine dyes. Our results pave the way for future research into the mechanism of molecular self-assembly in similar light-harvesting complexes, offering valuable insights for understanding and optimizing self-assembly processes for various (nano)technological applications.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.