重新评估化学掺杂导电聚合物中极化子捕获的红外光谱特征。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Abdul Rashid Umar, Christopher Grieco
{"title":"重新评估化学掺杂导电聚合物中极化子捕获的红外光谱特征。","authors":"Abdul Rashid Umar, Christopher Grieco","doi":"10.1063/5.0250708","DOIUrl":null,"url":null,"abstract":"<p><p>Charge conductivity in conducting polymers is typically improved by increasing carrier density via chemical oxidation. However, the resulting electrostatic stabilization of the carriers by the dopant ions, combined with their nanostructural environment, are both known to crucially affect charge trapping. Although the effects of charge-ion electrostatic interactions on carrier trapping have been well-characterized using conventional infrared (IR) spectroscopy, the impacts of the polymer chain ordering and energetic environment are difficult to disentangle. In this study, we examine the limitations of conventional IR absorption spectroscopy and introduce a complementary spectroscopic approach capable of discerning polaron trapping more generally. To do so, we investigated films of poly(3-hexylthiophene-2,5-diyl) (P3HT) chemically doped using four different oxidants, of which each preferentially dopes the amorphous and crystalline (lamellar) phases to varying extents. Using this model system, we observed counterintuitive shifts in the polaron IR absorption band, indicating that IR spectroscopy is a clear reporter of trapping only when the carriers exclusively reside in the lamellar phase and in the absence of bipolarons or coupled polarons. Alternatively, we found that polaron excited state dynamics, probed using ultrafast near-infrared transient absorption spectroscopy, more clearly report on charge trapping. This study demonstrates near-infrared transient absorption spectroscopy as a complementary tool for probing charge trapping in conducting polymers when doping induces carriers in different nanostructural environments.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 5","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reevaluating infrared spectroscopic signatures of polaron trapping in a chemically doped conducting polymer.\",\"authors\":\"Abdul Rashid Umar, Christopher Grieco\",\"doi\":\"10.1063/5.0250708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Charge conductivity in conducting polymers is typically improved by increasing carrier density via chemical oxidation. However, the resulting electrostatic stabilization of the carriers by the dopant ions, combined with their nanostructural environment, are both known to crucially affect charge trapping. Although the effects of charge-ion electrostatic interactions on carrier trapping have been well-characterized using conventional infrared (IR) spectroscopy, the impacts of the polymer chain ordering and energetic environment are difficult to disentangle. In this study, we examine the limitations of conventional IR absorption spectroscopy and introduce a complementary spectroscopic approach capable of discerning polaron trapping more generally. To do so, we investigated films of poly(3-hexylthiophene-2,5-diyl) (P3HT) chemically doped using four different oxidants, of which each preferentially dopes the amorphous and crystalline (lamellar) phases to varying extents. Using this model system, we observed counterintuitive shifts in the polaron IR absorption band, indicating that IR spectroscopy is a clear reporter of trapping only when the carriers exclusively reside in the lamellar phase and in the absence of bipolarons or coupled polarons. Alternatively, we found that polaron excited state dynamics, probed using ultrafast near-infrared transient absorption spectroscopy, more clearly report on charge trapping. This study demonstrates near-infrared transient absorption spectroscopy as a complementary tool for probing charge trapping in conducting polymers when doping induces carriers in different nanostructural environments.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"162 5\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0250708\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0250708","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

导电聚合物中的电荷导电性通常是通过化学氧化增加载流子密度来改善的。然而,掺杂离子对载流子产生的静电稳定性,以及它们的纳米结构环境,都是影响电荷捕获的关键因素。虽然电荷-离子静电相互作用对载流子捕获的影响已经用传统的红外光谱很好地表征了,但聚合物链的有序性和能态环境的影响很难分离出来。在这项研究中,我们研究了传统红外吸收光谱的局限性,并介绍了一种能够更普遍地识别极化子捕获的互补光谱方法。为此,我们研究了用四种不同的氧化剂化学掺杂聚(3-己基噻吩-2,5-二基)(P3HT)薄膜,每种氧化剂在不同程度上优先掺杂无定形和晶体(片层)相。利用该模型系统,我们观察到极化子红外吸收带的反直觉位移,表明只有当载流子完全存在于片层相并且没有双极化子或耦合极化子时,红外光谱才能清楚地报告捕获。另外,我们发现极化子激发态动力学,用超快近红外瞬态吸收光谱探测,更清楚地报告了电荷捕获。本研究表明,当掺杂诱导不同纳米结构环境中的载流子时,近红外瞬态吸收光谱作为探测导电聚合物中电荷捕获的补充工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reevaluating infrared spectroscopic signatures of polaron trapping in a chemically doped conducting polymer.

Charge conductivity in conducting polymers is typically improved by increasing carrier density via chemical oxidation. However, the resulting electrostatic stabilization of the carriers by the dopant ions, combined with their nanostructural environment, are both known to crucially affect charge trapping. Although the effects of charge-ion electrostatic interactions on carrier trapping have been well-characterized using conventional infrared (IR) spectroscopy, the impacts of the polymer chain ordering and energetic environment are difficult to disentangle. In this study, we examine the limitations of conventional IR absorption spectroscopy and introduce a complementary spectroscopic approach capable of discerning polaron trapping more generally. To do so, we investigated films of poly(3-hexylthiophene-2,5-diyl) (P3HT) chemically doped using four different oxidants, of which each preferentially dopes the amorphous and crystalline (lamellar) phases to varying extents. Using this model system, we observed counterintuitive shifts in the polaron IR absorption band, indicating that IR spectroscopy is a clear reporter of trapping only when the carriers exclusively reside in the lamellar phase and in the absence of bipolarons or coupled polarons. Alternatively, we found that polaron excited state dynamics, probed using ultrafast near-infrared transient absorption spectroscopy, more clearly report on charge trapping. This study demonstrates near-infrared transient absorption spectroscopy as a complementary tool for probing charge trapping in conducting polymers when doping induces carriers in different nanostructural environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信