Ole Golten, Lorenz Schwaiger, Zarah Forsberg, Kelsi R Hall, Anton A Stepnov, Tom Z Emrich-Mills, Iván Ayuso-Fernández, Morten Sørlie, Roland Ludwig, Åsmund Kjendseth Røhr, Vincent G H Eijsink
{"title":"氰化物和缓冲离子的抑制作用揭示了LPMOs之间的功能差异。","authors":"Ole Golten, Lorenz Schwaiger, Zarah Forsberg, Kelsi R Hall, Anton A Stepnov, Tom Z Emrich-Mills, Iván Ayuso-Fernández, Morten Sørlie, Roland Ludwig, Åsmund Kjendseth Røhr, Vincent G H Eijsink","doi":"10.1002/1873-3468.15105","DOIUrl":null,"url":null,"abstract":"<p><p>Enzymes known as lytic polysaccharide monooxygenases (LPMOs) are mono-copper polysaccharide-degrading peroxygenases that engage in several on- and off-pathway redox reactions involving O<sub>2</sub> and H<sub>2</sub>O<sub>2</sub>. Herein, we show that the known metalloenzyme inhibitor cyanide inhibits reductive activation of LPMOs by binding to the LPMO-Cu(II) state and that the degree of inhibition depends on the concentrations of the polysaccharide substrate, the reductant and H<sub>2</sub>O<sub>2</sub>. Importantly, this analysis revealed differences between fungal NcAA9C and bacterial SmAA10A, which have different secondary copper coordination spheres. These differences were also highlighted by the observation that phosphate, a commonly used buffer ion, strongly inhibits NcAA9C while not affecting reactions with SmAA10A. The results provide insight into LPMO inhibition and catalysis and highlight pitfalls in the analysis thereof.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional variation among LPMOs revealed by the inhibitory effects of cyanide and buffer ions.\",\"authors\":\"Ole Golten, Lorenz Schwaiger, Zarah Forsberg, Kelsi R Hall, Anton A Stepnov, Tom Z Emrich-Mills, Iván Ayuso-Fernández, Morten Sørlie, Roland Ludwig, Åsmund Kjendseth Røhr, Vincent G H Eijsink\",\"doi\":\"10.1002/1873-3468.15105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enzymes known as lytic polysaccharide monooxygenases (LPMOs) are mono-copper polysaccharide-degrading peroxygenases that engage in several on- and off-pathway redox reactions involving O<sub>2</sub> and H<sub>2</sub>O<sub>2</sub>. Herein, we show that the known metalloenzyme inhibitor cyanide inhibits reductive activation of LPMOs by binding to the LPMO-Cu(II) state and that the degree of inhibition depends on the concentrations of the polysaccharide substrate, the reductant and H<sub>2</sub>O<sub>2</sub>. Importantly, this analysis revealed differences between fungal NcAA9C and bacterial SmAA10A, which have different secondary copper coordination spheres. These differences were also highlighted by the observation that phosphate, a commonly used buffer ion, strongly inhibits NcAA9C while not affecting reactions with SmAA10A. The results provide insight into LPMO inhibition and catalysis and highlight pitfalls in the analysis thereof.</p>\",\"PeriodicalId\":12142,\"journal\":{\"name\":\"FEBS Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/1873-3468.15105\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.15105","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Functional variation among LPMOs revealed by the inhibitory effects of cyanide and buffer ions.
Enzymes known as lytic polysaccharide monooxygenases (LPMOs) are mono-copper polysaccharide-degrading peroxygenases that engage in several on- and off-pathway redox reactions involving O2 and H2O2. Herein, we show that the known metalloenzyme inhibitor cyanide inhibits reductive activation of LPMOs by binding to the LPMO-Cu(II) state and that the degree of inhibition depends on the concentrations of the polysaccharide substrate, the reductant and H2O2. Importantly, this analysis revealed differences between fungal NcAA9C and bacterial SmAA10A, which have different secondary copper coordination spheres. These differences were also highlighted by the observation that phosphate, a commonly used buffer ion, strongly inhibits NcAA9C while not affecting reactions with SmAA10A. The results provide insight into LPMO inhibition and catalysis and highlight pitfalls in the analysis thereof.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.