生物工程条件下诱导多能干细胞的扩增:第1部分。

IF 3.9 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Samuel Lukas Schneider, Misha Alexander Teale, Stefan Seidel, Jürgen Krasenbrink, Martin Poggel, Dieter Eibl, Marcos F. Q. Sousa, Regine Eibl
{"title":"生物工程条件下诱导多能干细胞的扩增:第1部分。","authors":"Samuel Lukas Schneider,&nbsp;Misha Alexander Teale,&nbsp;Stefan Seidel,&nbsp;Jürgen Krasenbrink,&nbsp;Martin Poggel,&nbsp;Dieter Eibl,&nbsp;Marcos F. Q. Sousa,&nbsp;Regine Eibl","doi":"10.1007/s00253-024-13372-3","DOIUrl":null,"url":null,"abstract":"<p>To fully utilize the potential of human induced pluripotent stem cells (hiPSCs) for allogeneic stem cell–based therapies, efficient and scalable expansion procedures must be developed. For other adherent human cell types, the combination of microcarriers (MCs) and stirred tank bioreactors has been shown to meet these demands. In this study, a hiPSC quasi-perfusion expansion procedure based on MCs was developed at 100-mL scale in spinner flasks. Process development began by assessing various medium exchange strategies and MC coatings, indicating that the hiPSCs tolerated the gradual exchange of medium well when cultivated on Synthemax II–coated MCs. This procedure was therefore scaled-up to the 1.3-L Eppendorf BioBLU 1c stirred tank bioreactor by applying the lower limit of Zwietering’s suspension criterion (<span>\\({N}_{s1u}\\)</span>), thereby demonstrating proof-of-concept when used in combination with hiPSCs for the first time. To better understand the bioreactor and its bioengineering characteristics, computational fluid dynamics and bioengineering investigations were performed prior to hiPSC cultivation. In this manner, improved process understanding allowed an expansion factor of ≈ 26 to be achieved, yielding more than 3 × 10<sup>9</sup> cells within 5 days. Further quality analyses confirmed that the hiPSCs maintained their viability, identity, and differentiation potential throughout cultivation.</p><p><i>• </i><span>\\({N}_{s1u}\\)</span><i> can be used as a scale-up criterion for hiPSC cultivations in MC-operated stirred bioreactors</i></p><p><i>• Uniform distribution and attachment of cells to the MCs are crucial for efficient expansion</i></p><p><i>• Perfusion is advantageous and supports the cultivation of hiPSCs</i></p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"109 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00253-024-13372-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Expansion of induced pluripotent stem cells under consideration of bioengineering aspects: part 1\",\"authors\":\"Samuel Lukas Schneider,&nbsp;Misha Alexander Teale,&nbsp;Stefan Seidel,&nbsp;Jürgen Krasenbrink,&nbsp;Martin Poggel,&nbsp;Dieter Eibl,&nbsp;Marcos F. Q. Sousa,&nbsp;Regine Eibl\",\"doi\":\"10.1007/s00253-024-13372-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To fully utilize the potential of human induced pluripotent stem cells (hiPSCs) for allogeneic stem cell–based therapies, efficient and scalable expansion procedures must be developed. For other adherent human cell types, the combination of microcarriers (MCs) and stirred tank bioreactors has been shown to meet these demands. In this study, a hiPSC quasi-perfusion expansion procedure based on MCs was developed at 100-mL scale in spinner flasks. Process development began by assessing various medium exchange strategies and MC coatings, indicating that the hiPSCs tolerated the gradual exchange of medium well when cultivated on Synthemax II–coated MCs. This procedure was therefore scaled-up to the 1.3-L Eppendorf BioBLU 1c stirred tank bioreactor by applying the lower limit of Zwietering’s suspension criterion (<span>\\\\({N}_{s1u}\\\\)</span>), thereby demonstrating proof-of-concept when used in combination with hiPSCs for the first time. To better understand the bioreactor and its bioengineering characteristics, computational fluid dynamics and bioengineering investigations were performed prior to hiPSC cultivation. In this manner, improved process understanding allowed an expansion factor of ≈ 26 to be achieved, yielding more than 3 × 10<sup>9</sup> cells within 5 days. Further quality analyses confirmed that the hiPSCs maintained their viability, identity, and differentiation potential throughout cultivation.</p><p><i>• </i><span>\\\\({N}_{s1u}\\\\)</span><i> can be used as a scale-up criterion for hiPSC cultivations in MC-operated stirred bioreactors</i></p><p><i>• Uniform distribution and attachment of cells to the MCs are crucial for efficient expansion</i></p><p><i>• Perfusion is advantageous and supports the cultivation of hiPSCs</i></p>\",\"PeriodicalId\":8342,\"journal\":{\"name\":\"Applied Microbiology and Biotechnology\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00253-024-13372-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Microbiology and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00253-024-13372-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00253-024-13372-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

为了充分利用人类诱导多能干细胞(hipsc)在同种异体干细胞治疗中的潜力,必须开发高效和可扩展的扩增程序。对于其他贴壁的人类细胞类型,微载体(MCs)和搅拌槽生物反应器的组合已被证明可以满足这些要求。在本研究中,基于MCs的hiPSC准灌注扩张程序在旋转烧瓶中以100 ml的规模进行了开发。工艺开发开始于评估各种培养基交换策略和MC涂层,表明hiPSCs在Synthemax ii涂层的MC上培养时能够很好地耐受培养基的逐渐交换。因此,通过应用Zwietering悬浮标准的下限(N = 1 u),将该程序扩展到1.3 l Eppendorf BioBLU 1c搅拌槽生物反应器,从而首次证明了与hiPSCs联合使用时的概念验证。为了更好地了解生物反应器及其生物工程特性,在hiPSC培养之前进行了计算流体动力学和生物工程研究。通过这种方式,改进的工艺理解使扩增因子达到≈26,在5天内产生超过3 × 109个细胞。进一步的质量分析证实,hipsc在整个培养过程中保持了其活力、特性和分化潜力。•n1u可作为mc操作的搅拌生物反应器中hiPSC培养的放大标准•细胞均匀分布和附着在MCs上对于高效扩增至关重要•灌注是有利的,支持hiPSC的培养。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expansion of induced pluripotent stem cells under consideration of bioengineering aspects: part 1

To fully utilize the potential of human induced pluripotent stem cells (hiPSCs) for allogeneic stem cell–based therapies, efficient and scalable expansion procedures must be developed. For other adherent human cell types, the combination of microcarriers (MCs) and stirred tank bioreactors has been shown to meet these demands. In this study, a hiPSC quasi-perfusion expansion procedure based on MCs was developed at 100-mL scale in spinner flasks. Process development began by assessing various medium exchange strategies and MC coatings, indicating that the hiPSCs tolerated the gradual exchange of medium well when cultivated on Synthemax II–coated MCs. This procedure was therefore scaled-up to the 1.3-L Eppendorf BioBLU 1c stirred tank bioreactor by applying the lower limit of Zwietering’s suspension criterion (\({N}_{s1u}\)), thereby demonstrating proof-of-concept when used in combination with hiPSCs for the first time. To better understand the bioreactor and its bioengineering characteristics, computational fluid dynamics and bioengineering investigations were performed prior to hiPSC cultivation. In this manner, improved process understanding allowed an expansion factor of ≈ 26 to be achieved, yielding more than 3 × 109 cells within 5 days. Further quality analyses confirmed that the hiPSCs maintained their viability, identity, and differentiation potential throughout cultivation.

\({N}_{s1u}\) can be used as a scale-up criterion for hiPSC cultivations in MC-operated stirred bioreactors

• Uniform distribution and attachment of cells to the MCs are crucial for efficient expansion

• Perfusion is advantageous and supports the cultivation of hiPSCs

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Microbiology and Biotechnology
Applied Microbiology and Biotechnology 工程技术-生物工程与应用微生物
CiteScore
10.00
自引率
4.00%
发文量
535
审稿时长
2 months
期刊介绍: Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信