粒子负载界面的解扰:几何和历史的影响。

IF 2.8 3区 化学 Q3 CHEMISTRY, PHYSICAL
Soft Matter Pub Date : 2025-01-24 DOI:10.1039/D4SM01440E
Carole Planchette and Gregor Plohl
{"title":"粒子负载界面的解扰:几何和历史的影响。","authors":"Carole Planchette and Gregor Plohl","doi":"10.1039/D4SM01440E","DOIUrl":null,"url":null,"abstract":"<p >The unjamming of uniaxially compressed particle rafts triggered by the opening of a finite orifice on the opposite side is experimentally studied. Using glass beads of about 100 μm, three main behaviors are identified. Minimal unjamming does not allow significant relaxation. Axial unjamming corresponds to the growth of the unjammed domain along the compression direction with an almost constant width. The resulting channel, possibly extends through the entire raft length and may lead to partial stress relaxation. Finally, after the completion of axial unjamming, lateral unjamming may occur according to an erosion process during which jammed blocks detach from the channel edges. This is associated with important stress relaxation. By using different raft geometries, <em>i.e.</em> various raft lengths, compression levels, and opening widths, we rationalize the occurrence of these behaviors, attributing them to the rupture of the force chain network against shear and elongation, respectively. Comparing results from equally densely packed rafts prepared with three different protocols demonstrates that these two thresholds are strongly affected by the raft's history.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 9","pages":" 1718-1730"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799874/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unjamming of particle–laden interfaces: effects of geometry and history†\",\"authors\":\"Carole Planchette and Gregor Plohl\",\"doi\":\"10.1039/D4SM01440E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The unjamming of uniaxially compressed particle rafts triggered by the opening of a finite orifice on the opposite side is experimentally studied. Using glass beads of about 100 μm, three main behaviors are identified. Minimal unjamming does not allow significant relaxation. Axial unjamming corresponds to the growth of the unjammed domain along the compression direction with an almost constant width. The resulting channel, possibly extends through the entire raft length and may lead to partial stress relaxation. Finally, after the completion of axial unjamming, lateral unjamming may occur according to an erosion process during which jammed blocks detach from the channel edges. This is associated with important stress relaxation. By using different raft geometries, <em>i.e.</em> various raft lengths, compression levels, and opening widths, we rationalize the occurrence of these behaviors, attributing them to the rupture of the force chain network against shear and elongation, respectively. Comparing results from equally densely packed rafts prepared with three different protocols demonstrates that these two thresholds are strongly affected by the raft's history.</p>\",\"PeriodicalId\":103,\"journal\":{\"name\":\"Soft Matter\",\"volume\":\" 9\",\"pages\":\" 1718-1730\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799874/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Matter\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/sm/d4sm01440e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sm/d4sm01440e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

实验研究了单轴压缩颗粒筏在对侧开有限孔时的解卡现象。使用约100 μm的玻璃微珠,确定了三种主要行为。最小程度的疏解不允许明显的放松。轴向解卡对应于解卡区域沿压缩方向以几乎恒定的宽度增长。由此产生的通道可能延伸到整个筏体长度,并可能导致部分应力松弛。最后,在完成轴向疏解后,根据淤塞块从通道边缘分离的侵蚀过程,可能发生横向疏解。这与重要的压力放松有关。通过使用不同的木筏几何形状,即不同的木筏长度,压缩水平和开口宽度,我们合理化了这些行为的发生,将它们分别归因于力链网络在剪切和伸长下的断裂。比较用三种不同方案制备的相同密度的木筏的结果表明,这两个阈值受到木筏历史的强烈影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unjamming of particle–laden interfaces: effects of geometry and history†

Unjamming of particle–laden interfaces: effects of geometry and history†

The unjamming of uniaxially compressed particle rafts triggered by the opening of a finite orifice on the opposite side is experimentally studied. Using glass beads of about 100 μm, three main behaviors are identified. Minimal unjamming does not allow significant relaxation. Axial unjamming corresponds to the growth of the unjammed domain along the compression direction with an almost constant width. The resulting channel, possibly extends through the entire raft length and may lead to partial stress relaxation. Finally, after the completion of axial unjamming, lateral unjamming may occur according to an erosion process during which jammed blocks detach from the channel edges. This is associated with important stress relaxation. By using different raft geometries, i.e. various raft lengths, compression levels, and opening widths, we rationalize the occurrence of these behaviors, attributing them to the rupture of the force chain network against shear and elongation, respectively. Comparing results from equally densely packed rafts prepared with three different protocols demonstrates that these two thresholds are strongly affected by the raft's history.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信