离子装置:从神经形态计算到与大脑连接。

IF 3.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Zijia Huang, Tingting Mei, Xinyi Zhu, Kai Xiao
{"title":"离子装置:从神经形态计算到与大脑连接。","authors":"Zijia Huang,&nbsp;Tingting Mei,&nbsp;Xinyi Zhu,&nbsp;Kai Xiao","doi":"10.1002/asia.202401170","DOIUrl":null,"url":null,"abstract":"<p>In living organisms, the modulation of ion conductivity in ion channels of neuron cells enables intelligent behaviors, such as generating, transmitting, and storing neural signals. Drawing inspiration from these natural processes, researchers have fabricated ionic devices that replicate the functions of the nervous system. However, this field remains in its infancy, necessitating extensive foundational research in ionic device preparation, algorithm development, and biological interaction. This review summarizes recently developed neuromorphic ionic devices into three categories based on the materials states: liquid, semi-solid, and solid. The neural network algorithms embedded in these devices for neuromorphic computing are introduced, and future directions for the development of bidirectional human-computer interaction and hybrid human-computer intelligence are discussed.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":"20 7","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ionic Device: From Neuromorphic Computing to Interfacing with the Brain\",\"authors\":\"Zijia Huang,&nbsp;Tingting Mei,&nbsp;Xinyi Zhu,&nbsp;Kai Xiao\",\"doi\":\"10.1002/asia.202401170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In living organisms, the modulation of ion conductivity in ion channels of neuron cells enables intelligent behaviors, such as generating, transmitting, and storing neural signals. Drawing inspiration from these natural processes, researchers have fabricated ionic devices that replicate the functions of the nervous system. However, this field remains in its infancy, necessitating extensive foundational research in ionic device preparation, algorithm development, and biological interaction. This review summarizes recently developed neuromorphic ionic devices into three categories based on the materials states: liquid, semi-solid, and solid. The neural network algorithms embedded in these devices for neuromorphic computing are introduced, and future directions for the development of bidirectional human-computer interaction and hybrid human-computer intelligence are discussed.</p>\",\"PeriodicalId\":145,\"journal\":{\"name\":\"Chemistry - An Asian Journal\",\"volume\":\"20 7\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - An Asian Journal\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asia.202401170\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asia.202401170","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在生物体中,神经元细胞离子通道中离子电导率的调节使神经信号的产生、传递和存储等智能行为得以实现。从这些自然过程中获得灵感,研究人员制造出了可以复制神经系统功能的离子装置。然而,这一领域仍处于起步阶段,需要在离子器件制备、算法开发和生物相互作用方面进行广泛的基础研究。本文将近年来发展起来的神经形态离子器件根据材料状态分为液体、半固体和固体三类。介绍了嵌入在这些设备中的神经网络算法,并讨论了双向人机交互和混合人机智能的未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ionic Device: From Neuromorphic Computing to Interfacing with the Brain

Ionic Device: From Neuromorphic Computing to Interfacing with the Brain

In living organisms, the modulation of ion conductivity in ion channels of neuron cells enables intelligent behaviors, such as generating, transmitting, and storing neural signals. Drawing inspiration from these natural processes, researchers have fabricated ionic devices that replicate the functions of the nervous system. However, this field remains in its infancy, necessitating extensive foundational research in ionic device preparation, algorithm development, and biological interaction. This review summarizes recently developed neuromorphic ionic devices into three categories based on the materials states: liquid, semi-solid, and solid. The neural network algorithms embedded in these devices for neuromorphic computing are introduced, and future directions for the development of bidirectional human-computer interaction and hybrid human-computer intelligence are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信