面向动态网络嵌入的稀疏深度自编码器优化

IF 8.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Huimei Tang, Yutao Zhang, Lijia Ma, Qiuzhen Lin, Liping Huang, Jianqiang Li, Maoguo Gong
{"title":"面向动态网络嵌入的稀疏深度自编码器优化","authors":"Huimei Tang,&nbsp;Yutao Zhang,&nbsp;Lijia Ma,&nbsp;Qiuzhen Lin,&nbsp;Liping Huang,&nbsp;Jianqiang Li,&nbsp;Maoguo Gong","doi":"10.1049/cit2.12367","DOIUrl":null,"url":null,"abstract":"<p>Network embedding (NE) tries to learn the potential properties of complex networks represented in a low-dimensional feature space. However, the existing deep learning-based NE methods are time-consuming as they need to train a dense architecture for deep neural networks with extensive unknown weight parameters. A sparse deep autoencoder (called SPDNE) for dynamic NE is proposed, aiming to learn the network structures while preserving the node evolution with a low computational complexity. SPDNE tries to use an optimal sparse architecture to replace the fully connected architecture in the deep autoencoder while maintaining the performance of these models in the dynamic NE. Then, an adaptive simulated algorithm to find the optimal sparse architecture for the deep autoencoder is proposed. The performance of SPDNE over three dynamical NE models (i.e. sparse architecture-based deep autoencoder method, DynGEM, and ElvDNE) is evaluated on three well-known benchmark networks and five real-world networks. The experimental results demonstrate that SPDNE can reduce about 70% of weight parameters of the architecture for the deep autoencoder during the training process while preserving the performance of these dynamical NE models. The results also show that SPDNE achieves the highest accuracy on 72 out of 96 edge prediction and network reconstruction tasks compared with the state-of-the-art dynamical NE algorithms.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"9 6","pages":"1361-1376"},"PeriodicalIF":8.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12367","citationCount":"0","resultStr":"{\"title\":\"Optimisation of sparse deep autoencoders for dynamic network embedding\",\"authors\":\"Huimei Tang,&nbsp;Yutao Zhang,&nbsp;Lijia Ma,&nbsp;Qiuzhen Lin,&nbsp;Liping Huang,&nbsp;Jianqiang Li,&nbsp;Maoguo Gong\",\"doi\":\"10.1049/cit2.12367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Network embedding (NE) tries to learn the potential properties of complex networks represented in a low-dimensional feature space. However, the existing deep learning-based NE methods are time-consuming as they need to train a dense architecture for deep neural networks with extensive unknown weight parameters. A sparse deep autoencoder (called SPDNE) for dynamic NE is proposed, aiming to learn the network structures while preserving the node evolution with a low computational complexity. SPDNE tries to use an optimal sparse architecture to replace the fully connected architecture in the deep autoencoder while maintaining the performance of these models in the dynamic NE. Then, an adaptive simulated algorithm to find the optimal sparse architecture for the deep autoencoder is proposed. The performance of SPDNE over three dynamical NE models (i.e. sparse architecture-based deep autoencoder method, DynGEM, and ElvDNE) is evaluated on three well-known benchmark networks and five real-world networks. The experimental results demonstrate that SPDNE can reduce about 70% of weight parameters of the architecture for the deep autoencoder during the training process while preserving the performance of these dynamical NE models. The results also show that SPDNE achieves the highest accuracy on 72 out of 96 edge prediction and network reconstruction tasks compared with the state-of-the-art dynamical NE algorithms.</p>\",\"PeriodicalId\":46211,\"journal\":{\"name\":\"CAAI Transactions on Intelligence Technology\",\"volume\":\"9 6\",\"pages\":\"1361-1376\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12367\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAAI Transactions on Intelligence Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12367\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12367","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

网络嵌入(NE)试图学习在低维特征空间中表示的复杂网络的潜在属性。然而,现有的基于深度学习的神经网络方法非常耗时,因为它们需要为具有大量未知权重参数的深度神经网络训练密集的体系结构。提出了一种用于动态网元的稀疏深度自编码器(SPDNE),旨在以较低的计算复杂度学习网络结构的同时保持节点进化。SPDNE尝试使用最优的稀疏架构来取代深度自编码器中的全连接架构,同时在动态网元中保持这些模型的性能。然后,提出了一种自适应仿真算法来寻找深度自编码器的最优稀疏结构。SPDNE在三种动态网元模型(即基于稀疏架构的深度自编码器方法、DynGEM和ElvDNE)上的性能在三个知名的基准网络和五个实际网络上进行了评估。实验结果表明,SPDNE可以在保持动态网模型性能的同时,在深度自编码器的训练过程中减少约70%的结构权重参数。结果还表明,与最先进的动态网元算法相比,SPDNE在96个边缘预测和网络重建任务中的72个任务中达到了最高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimisation of sparse deep autoencoders for dynamic network embedding

Optimisation of sparse deep autoencoders for dynamic network embedding

Network embedding (NE) tries to learn the potential properties of complex networks represented in a low-dimensional feature space. However, the existing deep learning-based NE methods are time-consuming as they need to train a dense architecture for deep neural networks with extensive unknown weight parameters. A sparse deep autoencoder (called SPDNE) for dynamic NE is proposed, aiming to learn the network structures while preserving the node evolution with a low computational complexity. SPDNE tries to use an optimal sparse architecture to replace the fully connected architecture in the deep autoencoder while maintaining the performance of these models in the dynamic NE. Then, an adaptive simulated algorithm to find the optimal sparse architecture for the deep autoencoder is proposed. The performance of SPDNE over three dynamical NE models (i.e. sparse architecture-based deep autoencoder method, DynGEM, and ElvDNE) is evaluated on three well-known benchmark networks and five real-world networks. The experimental results demonstrate that SPDNE can reduce about 70% of weight parameters of the architecture for the deep autoencoder during the training process while preserving the performance of these dynamical NE models. The results also show that SPDNE achieves the highest accuracy on 72 out of 96 edge prediction and network reconstruction tasks compared with the state-of-the-art dynamical NE algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CAAI Transactions on Intelligence Technology
CAAI Transactions on Intelligence Technology COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
11.00
自引率
3.90%
发文量
134
审稿时长
35 weeks
期刊介绍: CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信