无辅助数据的宽带多输入多输出雷达测向超参数无稀疏估计

IF 1.4 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Jiong Xiao, Bo Tang
{"title":"无辅助数据的宽带多输入多输出雷达测向超参数无稀疏估计","authors":"Jiong Xiao,&nbsp;Bo Tang","doi":"10.1049/rsn2.12658","DOIUrl":null,"url":null,"abstract":"<p>The estimation of target directions of arrival (DOA) for wideband multiple-input-multiple-output (MIMO) radar is investigated in this article. First, the authors establish a signal model for wideband MIMO radar systems. Then, an algorithm is proposed to estimate the target angles without secondary data (i.e. the training data from slow-time is not required).The proposed algorithm unitises the spatial sparsity of target signals and it is derived under the Bayesian framework. It can estimate the spatial pseudo-spectra of the targets through cyclic optimisation. Additionally, it is hyperparameter-free and guarantees convergence. To analyse the performance of the proposed algorithm, the Cramér-Rao bound (CRB) is derived for DOA estimation with wideband MIMO radar. Numerical examples demonstrate that even without secondary data, the proposed algorithm can accurately estimate the DOA of the targets.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"18 12","pages":"2552-2563"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12658","citationCount":"0","resultStr":"{\"title\":\"Hyperparameter free sparse estimation for wideband multiple-input-multiple-output radar direction finding without secondary data\",\"authors\":\"Jiong Xiao,&nbsp;Bo Tang\",\"doi\":\"10.1049/rsn2.12658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The estimation of target directions of arrival (DOA) for wideband multiple-input-multiple-output (MIMO) radar is investigated in this article. First, the authors establish a signal model for wideband MIMO radar systems. Then, an algorithm is proposed to estimate the target angles without secondary data (i.e. the training data from slow-time is not required).The proposed algorithm unitises the spatial sparsity of target signals and it is derived under the Bayesian framework. It can estimate the spatial pseudo-spectra of the targets through cyclic optimisation. Additionally, it is hyperparameter-free and guarantees convergence. To analyse the performance of the proposed algorithm, the Cramér-Rao bound (CRB) is derived for DOA estimation with wideband MIMO radar. Numerical examples demonstrate that even without secondary data, the proposed algorithm can accurately estimate the DOA of the targets.</p>\",\"PeriodicalId\":50377,\"journal\":{\"name\":\"Iet Radar Sonar and Navigation\",\"volume\":\"18 12\",\"pages\":\"2552-2563\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12658\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Radar Sonar and Navigation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12658\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12658","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

研究了宽带多输入多输出(MIMO)雷达目标到达方向(DOA)估计问题。首先,建立了宽带MIMO雷达系统的信号模型。然后,提出了一种不需要辅助数据(即不需要slow-time训练数据)的目标角度估计算法。该算法结合目标信号的空间稀疏性,在贝叶斯框架下推导。通过循环优化可以估计目标的空间伪光谱。此外,它是无超参数的,并保证收敛性。为了分析该算法的性能,推导了用于宽带MIMO雷达DOA估计的cram - rao界(CRB)。数值算例表明,即使在没有辅助数据的情况下,该算法也能准确地估计出目标的方位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hyperparameter free sparse estimation for wideband multiple-input-multiple-output radar direction finding without secondary data

Hyperparameter free sparse estimation for wideband multiple-input-multiple-output radar direction finding without secondary data

The estimation of target directions of arrival (DOA) for wideband multiple-input-multiple-output (MIMO) radar is investigated in this article. First, the authors establish a signal model for wideband MIMO radar systems. Then, an algorithm is proposed to estimate the target angles without secondary data (i.e. the training data from slow-time is not required).The proposed algorithm unitises the spatial sparsity of target signals and it is derived under the Bayesian framework. It can estimate the spatial pseudo-spectra of the targets through cyclic optimisation. Additionally, it is hyperparameter-free and guarantees convergence. To analyse the performance of the proposed algorithm, the Cramér-Rao bound (CRB) is derived for DOA estimation with wideband MIMO radar. Numerical examples demonstrate that even without secondary data, the proposed algorithm can accurately estimate the DOA of the targets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信