人工智能和放射组学在前列腺癌骨转移成像中的应用综述

iRadiology Pub Date : 2024-09-26 DOI:10.1002/ird3.99
S. J. Pawan, Joseph Rich, Jonathan Le, Ethan Yi, Timothy Triche, Amir Goldkorn, Vinay Duddalwar
{"title":"人工智能和放射组学在前列腺癌骨转移成像中的应用综述","authors":"S. J. Pawan,&nbsp;Joseph Rich,&nbsp;Jonathan Le,&nbsp;Ethan Yi,&nbsp;Timothy Triche,&nbsp;Amir Goldkorn,&nbsp;Vinay Duddalwar","doi":"10.1002/ird3.99","DOIUrl":null,"url":null,"abstract":"<p>The skeletal system is the most common site of metastatic prostate cancer and these lesions are associated with poor outcomes. Diagnosing these osseous metastatic lesions relies on radiologic imaging, making early detection, diagnosis, and monitoring crucial for clinical management. However, the literature lacks a detailed analysis of various approaches and future directions. To address this gap, we present a scoping review of quantitative methods from diverse domains, including radiomics, machine learning, and deep learning, applied to imaging analysis of prostate cancer with clinical insights. Our findings highlight the need for developing clinically significant methods to aid in the battle against prostate bone metastasis.</p>","PeriodicalId":73508,"journal":{"name":"iRadiology","volume":"2 6","pages":"527-538"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird3.99","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence and radiomics applied to prostate cancer bone metastasis imaging: A review\",\"authors\":\"S. J. Pawan,&nbsp;Joseph Rich,&nbsp;Jonathan Le,&nbsp;Ethan Yi,&nbsp;Timothy Triche,&nbsp;Amir Goldkorn,&nbsp;Vinay Duddalwar\",\"doi\":\"10.1002/ird3.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The skeletal system is the most common site of metastatic prostate cancer and these lesions are associated with poor outcomes. Diagnosing these osseous metastatic lesions relies on radiologic imaging, making early detection, diagnosis, and monitoring crucial for clinical management. However, the literature lacks a detailed analysis of various approaches and future directions. To address this gap, we present a scoping review of quantitative methods from diverse domains, including radiomics, machine learning, and deep learning, applied to imaging analysis of prostate cancer with clinical insights. Our findings highlight the need for developing clinically significant methods to aid in the battle against prostate bone metastasis.</p>\",\"PeriodicalId\":73508,\"journal\":{\"name\":\"iRadiology\",\"volume\":\"2 6\",\"pages\":\"527-538\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird3.99\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iRadiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ird3.99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iRadiology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ird3.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

骨骼系统是转移性前列腺癌最常见的部位,这些病变与预后不良有关。诊断这些骨转移性病变依赖于影像学,因此早期发现、诊断和监测对临床管理至关重要。然而,文献缺乏对各种方法和未来方向的详细分析。为了解决这一差距,我们对不同领域的定量方法进行了范围审查,包括放射组学、机器学习和深度学习,这些方法应用于具有临床见解的前列腺癌成像分析。我们的研究结果强调需要开发具有临床意义的方法来帮助对抗前列腺骨转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Artificial intelligence and radiomics applied to prostate cancer bone metastasis imaging: A review

Artificial intelligence and radiomics applied to prostate cancer bone metastasis imaging: A review

The skeletal system is the most common site of metastatic prostate cancer and these lesions are associated with poor outcomes. Diagnosing these osseous metastatic lesions relies on radiologic imaging, making early detection, diagnosis, and monitoring crucial for clinical management. However, the literature lacks a detailed analysis of various approaches and future directions. To address this gap, we present a scoping review of quantitative methods from diverse domains, including radiomics, machine learning, and deep learning, applied to imaging analysis of prostate cancer with clinical insights. Our findings highlight the need for developing clinically significant methods to aid in the battle against prostate bone metastasis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信