AS-XAI: CNN自监督自动语义解释

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Changqi Sun, Hao Xu, Yuntian Chen, Dongxiao Zhang
{"title":"AS-XAI: CNN自监督自动语义解释","authors":"Changqi Sun,&nbsp;Hao Xu,&nbsp;Yuntian Chen,&nbsp;Dongxiao Zhang","doi":"10.1002/aisy.202470055","DOIUrl":null,"url":null,"abstract":"<p><b>Interpretable Machine Learning</b>\n </p><p>Interpretable machine learning is essential for building trustworthy AI systems. Automated Semantically Interpretable AI (AS-XAI) extracts the common semantic feature space of diverse data samples and combines this feature space with a sensitivity analysis of neural networks in each semantic space to understand the networks’ decision-making processes. AS-XAI leverages the model’s understanding of common semantics in existing data to enable a wide range of fine-grained and scalable real-world applications. This approach allows for comprehensive semantic conceptual interpretations of out-of-distribution hybrids as well as species that are difficult for humans to recognize. See article number 2400359 by Changqi Sun, Hao Xu, Yuntian Chen, and Dongxiao Zhang.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 12","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202470055","citationCount":"0","resultStr":"{\"title\":\"AS-XAI: Self-Supervised Automatic Semantic Interpretation for CNN\",\"authors\":\"Changqi Sun,&nbsp;Hao Xu,&nbsp;Yuntian Chen,&nbsp;Dongxiao Zhang\",\"doi\":\"10.1002/aisy.202470055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Interpretable Machine Learning</b>\\n </p><p>Interpretable machine learning is essential for building trustworthy AI systems. Automated Semantically Interpretable AI (AS-XAI) extracts the common semantic feature space of diverse data samples and combines this feature space with a sensitivity analysis of neural networks in each semantic space to understand the networks’ decision-making processes. AS-XAI leverages the model’s understanding of common semantics in existing data to enable a wide range of fine-grained and scalable real-world applications. This approach allows for comprehensive semantic conceptual interpretations of out-of-distribution hybrids as well as species that are difficult for humans to recognize. See article number 2400359 by Changqi Sun, Hao Xu, Yuntian Chen, and Dongxiao Zhang.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"6 12\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202470055\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202470055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202470055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

可解释的机器学习对于构建可信赖的人工智能系统至关重要。自动语义可解释性人工智能(AS-XAI)提取不同数据样本的共同语义特征空间,并将该特征空间与每个语义空间中神经网络的敏感性分析相结合,以了解网络的决策过程。AS-XAI利用模型对现有数据中通用语义的理解来支持广泛的细粒度和可扩展的实际应用程序。这种方法允许对分布外的杂交种以及人类难以识别的物种进行全面的语义概念解释。见文章编号2400359由孙昌奇,徐浩,陈云天,和张东晓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

AS-XAI: Self-Supervised Automatic Semantic Interpretation for CNN

AS-XAI: Self-Supervised Automatic Semantic Interpretation for CNN

Interpretable Machine Learning

Interpretable machine learning is essential for building trustworthy AI systems. Automated Semantically Interpretable AI (AS-XAI) extracts the common semantic feature space of diverse data samples and combines this feature space with a sensitivity analysis of neural networks in each semantic space to understand the networks’ decision-making processes. AS-XAI leverages the model’s understanding of common semantics in existing data to enable a wide range of fine-grained and scalable real-world applications. This approach allows for comprehensive semantic conceptual interpretations of out-of-distribution hybrids as well as species that are difficult for humans to recognize. See article number 2400359 by Changqi Sun, Hao Xu, Yuntian Chen, and Dongxiao Zhang.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信