水下跳频通信的可重构超低频磁电天线

IF 1.1 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Shi-Yu Wang, Gao-Qi Dou, Da Yi, Shi-Min Feng, Ming-Chun Tang
{"title":"水下跳频通信的可重构超低频磁电天线","authors":"Shi-Yu Wang,&nbsp;Gao-Qi Dou,&nbsp;Da Yi,&nbsp;Shi-Min Feng,&nbsp;Ming-Chun Tang","doi":"10.1049/mia2.12523","DOIUrl":null,"url":null,"abstract":"<p>Based on the mechanical regulation mechanism, a super-low-frequency (SLF) reconfigurable magnetoelectric (ME) antenna is proposed for underwater frequency-hopping communication. By constructing the mechanical model of the ME antenna loaded with an adjustable spring, the antenna's working frequency is predicted to be tuned in an extensive dynamic range from 148 to 331 Hz by changing the states of a loaded spring. The experiment is implemented in the frequency-response test platform and the practical communication system using the minimum shift keying modulation. The former experiment well validates the tunable frequency response of the reconfigurable ME antenna, while the latter successfully achieves the information transmission at different working frequencies. The proposed SLF reconfigurable ME antenna serves as a potential candidate for under-water frequency-hopping communication.</p>","PeriodicalId":13374,"journal":{"name":"Iet Microwaves Antennas & Propagation","volume":"18 12","pages":"911-916"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.12523","citationCount":"0","resultStr":"{\"title\":\"Reconfigurable super-low-frequency magnetoelectric antenna for underwater frequency-hopping communication\",\"authors\":\"Shi-Yu Wang,&nbsp;Gao-Qi Dou,&nbsp;Da Yi,&nbsp;Shi-Min Feng,&nbsp;Ming-Chun Tang\",\"doi\":\"10.1049/mia2.12523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Based on the mechanical regulation mechanism, a super-low-frequency (SLF) reconfigurable magnetoelectric (ME) antenna is proposed for underwater frequency-hopping communication. By constructing the mechanical model of the ME antenna loaded with an adjustable spring, the antenna's working frequency is predicted to be tuned in an extensive dynamic range from 148 to 331 Hz by changing the states of a loaded spring. The experiment is implemented in the frequency-response test platform and the practical communication system using the minimum shift keying modulation. The former experiment well validates the tunable frequency response of the reconfigurable ME antenna, while the latter successfully achieves the information transmission at different working frequencies. The proposed SLF reconfigurable ME antenna serves as a potential candidate for under-water frequency-hopping communication.</p>\",\"PeriodicalId\":13374,\"journal\":{\"name\":\"Iet Microwaves Antennas & Propagation\",\"volume\":\"18 12\",\"pages\":\"911-916\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.12523\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Microwaves Antennas & Propagation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/mia2.12523\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Microwaves Antennas & Propagation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mia2.12523","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

基于机械调节机制,提出了一种用于水下跳频通信的超低频可重构磁电天线。通过建立加载可调弹簧的ME天线的力学模型,预测通过改变加载弹簧的状态,天线的工作频率可在148 ~ 331 Hz的广阔动态范围内调谐。实验采用最小移位键控调制在频响测试平台和实际通信系统中进行。前者实验很好地验证了可重构ME天线的可调谐频率响应,后者则成功地实现了不同工作频率下的信息传输。所提出的SLF可重构ME天线可作为水下跳频通信的潜在候选天线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reconfigurable super-low-frequency magnetoelectric antenna for underwater frequency-hopping communication

Reconfigurable super-low-frequency magnetoelectric antenna for underwater frequency-hopping communication

Based on the mechanical regulation mechanism, a super-low-frequency (SLF) reconfigurable magnetoelectric (ME) antenna is proposed for underwater frequency-hopping communication. By constructing the mechanical model of the ME antenna loaded with an adjustable spring, the antenna's working frequency is predicted to be tuned in an extensive dynamic range from 148 to 331 Hz by changing the states of a loaded spring. The experiment is implemented in the frequency-response test platform and the practical communication system using the minimum shift keying modulation. The former experiment well validates the tunable frequency response of the reconfigurable ME antenna, while the latter successfully achieves the information transmission at different working frequencies. The proposed SLF reconfigurable ME antenna serves as a potential candidate for under-water frequency-hopping communication.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Microwaves Antennas & Propagation
Iet Microwaves Antennas & Propagation 工程技术-电信学
CiteScore
4.30
自引率
5.90%
发文量
109
审稿时长
7 months
期刊介绍: Topics include, but are not limited to: Microwave circuits including RF, microwave and millimetre-wave amplifiers, oscillators, switches, mixers and other components implemented in monolithic, hybrid, multi-chip module and other technologies. Papers on passive components may describe transmission-line and waveguide components, including filters, multiplexers, resonators, ferrite and garnet devices. For applications, papers can describe microwave sub-systems for use in communications, radar, aerospace, instrumentation, industrial and medical applications. Microwave linear and non-linear measurement techniques. Antenna topics including designed and prototyped antennas for operation at all frequencies; multiband antennas, antenna measurement techniques and systems, antenna analysis and design, aperture antenna arrays, adaptive antennas, printed and wire antennas, microstrip, reconfigurable, conformal and integrated antennas. Computational electromagnetics and synthesis of antenna structures including phased arrays and antenna design algorithms. Radiowave propagation at all frequencies and environments. Current Special Issue. Call for papers: Metrology for 5G Technologies - https://digital-library.theiet.org/files/IET_MAP_CFP_M5GT_SI2.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信