基于分数阶极点固定二阶广义积分器的并网太阳能光伏系统控制

IF 1.7 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Manoj Badoni, Alka Singh, Ravi Nath Tripathi, Rajeev Kumar, Vijay Kumar Singh
{"title":"基于分数阶极点固定二阶广义积分器的并网太阳能光伏系统控制","authors":"Manoj Badoni,&nbsp;Alka Singh,&nbsp;Ravi Nath Tripathi,&nbsp;Rajeev Kumar,&nbsp;Vijay Kumar Singh","doi":"10.1049/pel2.12823","DOIUrl":null,"url":null,"abstract":"<p>In this article, the development of multi-functional grid connected solar photovoltaic (PV) system using improved Fractional order Control theory-based Pole fixed Second Order Generalized Integrator (FO-PFSOGI) is proposed. The fractional order (FO) control technique offers an advantage to adjust the fixed structure of the integer order and provide additional degree of freedom to achieve accurate response during the system operation. The FO-PFSOGI control technique is used to extricate fundamental constituent of the non-sinusoidal load current. The PV system is competent of feeding the local load requisite and may also inject surplus power into the grid. The voltage source converter (VSC) utilized in the grid-connected system can also be operated as power quality compensator, taking care of harmonics, unbalancing and excess reactive power demand of the local load. The feasibility of multifunctional operations of the converter is established in this article, thus achieving maximum utilization of the power electronics used in the system and reducing the overall cost. A performance comparison of the developed control technique is presented with the conventional techniques in terms of harmonic compensation, weight convergence and computational complexity. The implementation of the controller is modest and extracts fundamental quantities without any phase delay under different loading conditions. The developed system is validated using both simulation and experimental study. A scaled down experimental setup of grid-connected PV system is implemented in the laboratory and real time performance of the FO-PFSOGI is demonstrated using variations in system load and PV irradiance.</p>","PeriodicalId":56302,"journal":{"name":"IET Power Electronics","volume":"17 16","pages":"3057-3070"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12823","citationCount":"0","resultStr":"{\"title\":\"Fractional order pole fixed second order generalized integrator based control for grid connected solar photovoltaic system\",\"authors\":\"Manoj Badoni,&nbsp;Alka Singh,&nbsp;Ravi Nath Tripathi,&nbsp;Rajeev Kumar,&nbsp;Vijay Kumar Singh\",\"doi\":\"10.1049/pel2.12823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, the development of multi-functional grid connected solar photovoltaic (PV) system using improved Fractional order Control theory-based Pole fixed Second Order Generalized Integrator (FO-PFSOGI) is proposed. The fractional order (FO) control technique offers an advantage to adjust the fixed structure of the integer order and provide additional degree of freedom to achieve accurate response during the system operation. The FO-PFSOGI control technique is used to extricate fundamental constituent of the non-sinusoidal load current. The PV system is competent of feeding the local load requisite and may also inject surplus power into the grid. The voltage source converter (VSC) utilized in the grid-connected system can also be operated as power quality compensator, taking care of harmonics, unbalancing and excess reactive power demand of the local load. The feasibility of multifunctional operations of the converter is established in this article, thus achieving maximum utilization of the power electronics used in the system and reducing the overall cost. A performance comparison of the developed control technique is presented with the conventional techniques in terms of harmonic compensation, weight convergence and computational complexity. The implementation of the controller is modest and extracts fundamental quantities without any phase delay under different loading conditions. The developed system is validated using both simulation and experimental study. A scaled down experimental setup of grid-connected PV system is implemented in the laboratory and real time performance of the FO-PFSOGI is demonstrated using variations in system load and PV irradiance.</p>\",\"PeriodicalId\":56302,\"journal\":{\"name\":\"IET Power Electronics\",\"volume\":\"17 16\",\"pages\":\"3057-3070\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12823\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Power Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12823\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12823","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于改进分数阶控制理论的极点固定二阶广义积分器(FO-PFSOGI)开发多功能并网太阳能光伏系统的方法。分数阶控制技术的优点是可以调整整数阶的固定结构,并在系统运行过程中提供额外的自由度以实现准确的响应。采用FO-PFSOGI控制技术提取非正弦负载电流的基本成分。光伏发电系统能够满足本地负荷的需要,也可以向电网注入剩余电力。并网系统中使用的电压源变换器(VSC)也可以作为电能质量补偿器,照顾局部负载的谐波、不平衡和多余的无功需求。本文建立了变流器多功能运行的可行性,从而最大限度地利用了系统中使用的电力电子器件,降低了总体成本。从谐波补偿、权值收敛性和计算复杂度等方面与传统控制方法进行了性能比较。在不同的负载条件下,控制器的实现是温和的,提取基量时没有相位延迟。通过仿真和实验验证了所开发系统的有效性。在实验室中实现了一个按比例缩小的并网光伏系统实验装置,并通过系统负载和光伏辐照度的变化来演示FO-PFSOGI的实时性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fractional order pole fixed second order generalized integrator based control for grid connected solar photovoltaic system

Fractional order pole fixed second order generalized integrator based control for grid connected solar photovoltaic system

In this article, the development of multi-functional grid connected solar photovoltaic (PV) system using improved Fractional order Control theory-based Pole fixed Second Order Generalized Integrator (FO-PFSOGI) is proposed. The fractional order (FO) control technique offers an advantage to adjust the fixed structure of the integer order and provide additional degree of freedom to achieve accurate response during the system operation. The FO-PFSOGI control technique is used to extricate fundamental constituent of the non-sinusoidal load current. The PV system is competent of feeding the local load requisite and may also inject surplus power into the grid. The voltage source converter (VSC) utilized in the grid-connected system can also be operated as power quality compensator, taking care of harmonics, unbalancing and excess reactive power demand of the local load. The feasibility of multifunctional operations of the converter is established in this article, thus achieving maximum utilization of the power electronics used in the system and reducing the overall cost. A performance comparison of the developed control technique is presented with the conventional techniques in terms of harmonic compensation, weight convergence and computational complexity. The implementation of the controller is modest and extracts fundamental quantities without any phase delay under different loading conditions. The developed system is validated using both simulation and experimental study. A scaled down experimental setup of grid-connected PV system is implemented in the laboratory and real time performance of the FO-PFSOGI is demonstrated using variations in system load and PV irradiance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Power Electronics
IET Power Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
5.50
自引率
10.00%
发文量
195
审稿时长
5.1 months
期刊介绍: IET Power Electronics aims to attract original research papers, short communications, review articles and power electronics related educational studies. The scope covers applications and technologies in the field of power electronics with special focus on cost-effective, efficient, power dense, environmental friendly and robust solutions, which includes: Applications: Electric drives/generators, renewable energy, industrial and consumable applications (including lighting, welding, heating, sub-sea applications, drilling and others), medical and military apparatus, utility applications, transport and space application, energy harvesting, telecommunications, energy storage management systems, home appliances. Technologies: Circuits: all type of converter topologies for low and high power applications including but not limited to: inverter, rectifier, dc/dc converter, power supplies, UPS, ac/ac converter, resonant converter, high frequency converter, hybrid converter, multilevel converter, power factor correction circuits and other advanced topologies. Components and Materials: switching devices and their control, inductors, sensors, transformers, capacitors, resistors, thermal management, filters, fuses and protection elements and other novel low-cost efficient components/materials. Control: techniques for controlling, analysing, modelling and/or simulation of power electronics circuits and complete power electronics systems. Design/Manufacturing/Testing: new multi-domain modelling, assembling and packaging technologies, advanced testing techniques. Environmental Impact: Electromagnetic Interference (EMI) reduction techniques, Electromagnetic Compatibility (EMC), limiting acoustic noise and vibration, recycling techniques, use of non-rare material. Education: teaching methods, programme and course design, use of technology in power electronics teaching, virtual laboratory and e-learning and fields within the scope of interest. Special Issues. Current Call for papers: Harmonic Mitigation Techniques and Grid Robustness in Power Electronic-Based Power Systems - https://digital-library.theiet.org/files/IET_PEL_CFP_HMTGRPEPS.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信