Wenqing Guan, Yi Cheng, Guangzhao Luo, Manfeng Dou
{"title":"考虑电流饱和约束的航空双电机执行器非线性自抗扰速度同步控制研究","authors":"Wenqing Guan, Yi Cheng, Guangzhao Luo, Manfeng Dou","doi":"10.1049/elp2.12514","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Electro-mechanical actuators with redundancy design use a cross-coupling control strategy to enhance the coordinated control capability of the aviation motors. Due to its linear control characteristic, traditional cross-coupling control reveals moderate dynamic response performance and synchronisation control accuracy. To further reduce the susceptibility to load torque and parameter perturbations in the application of a dual permanent magnet synchronous motor system, this paper proposes a non-linear active disturbance rejection control (ADRC)-based synchronisation control strategy. Considering the low gain problem of traditional ADRC when the speed tracking error is large, a non-linear ADRC speed controller with an <i>efal</i> function is designed. Meanwhile, a Levant differentiator is proposed to improve the speed tracking performance during dynamic processes. Moreover, a non-linear synchronous controller with current constraints is applied to the cross-coupling control to enhance the synchronisation convergence performance of the dual-PMSM system. Finally, simulation and experimental results demonstrate the effectiveness of the proposed non-linear ADRC speed synchronisation control.</p>\n </section>\n </div>","PeriodicalId":13352,"journal":{"name":"Iet Electric Power Applications","volume":"18 12","pages":"1796-1806"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12514","citationCount":"0","resultStr":"{\"title\":\"Research on non-linear active disturbance rejection speed synchronisation control of aviation dual motor actuator considering current saturation constraints\",\"authors\":\"Wenqing Guan, Yi Cheng, Guangzhao Luo, Manfeng Dou\",\"doi\":\"10.1049/elp2.12514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>Electro-mechanical actuators with redundancy design use a cross-coupling control strategy to enhance the coordinated control capability of the aviation motors. Due to its linear control characteristic, traditional cross-coupling control reveals moderate dynamic response performance and synchronisation control accuracy. To further reduce the susceptibility to load torque and parameter perturbations in the application of a dual permanent magnet synchronous motor system, this paper proposes a non-linear active disturbance rejection control (ADRC)-based synchronisation control strategy. Considering the low gain problem of traditional ADRC when the speed tracking error is large, a non-linear ADRC speed controller with an <i>efal</i> function is designed. Meanwhile, a Levant differentiator is proposed to improve the speed tracking performance during dynamic processes. Moreover, a non-linear synchronous controller with current constraints is applied to the cross-coupling control to enhance the synchronisation convergence performance of the dual-PMSM system. Finally, simulation and experimental results demonstrate the effectiveness of the proposed non-linear ADRC speed synchronisation control.</p>\\n </section>\\n </div>\",\"PeriodicalId\":13352,\"journal\":{\"name\":\"Iet Electric Power Applications\",\"volume\":\"18 12\",\"pages\":\"1796-1806\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12514\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Electric Power Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12514\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Electric Power Applications","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12514","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Research on non-linear active disturbance rejection speed synchronisation control of aviation dual motor actuator considering current saturation constraints
Electro-mechanical actuators with redundancy design use a cross-coupling control strategy to enhance the coordinated control capability of the aviation motors. Due to its linear control characteristic, traditional cross-coupling control reveals moderate dynamic response performance and synchronisation control accuracy. To further reduce the susceptibility to load torque and parameter perturbations in the application of a dual permanent magnet synchronous motor system, this paper proposes a non-linear active disturbance rejection control (ADRC)-based synchronisation control strategy. Considering the low gain problem of traditional ADRC when the speed tracking error is large, a non-linear ADRC speed controller with an efal function is designed. Meanwhile, a Levant differentiator is proposed to improve the speed tracking performance during dynamic processes. Moreover, a non-linear synchronous controller with current constraints is applied to the cross-coupling control to enhance the synchronisation convergence performance of the dual-PMSM system. Finally, simulation and experimental results demonstrate the effectiveness of the proposed non-linear ADRC speed synchronisation control.
期刊介绍:
IET Electric Power Applications publishes papers of a high technical standard with a suitable balance of practice and theory. The scope covers a wide range of applications and apparatus in the power field. In addition to papers focussing on the design and development of electrical equipment, papers relying on analysis are also sought, provided that the arguments are conveyed succinctly and the conclusions are clear.
The scope of the journal includes the following:
The design and analysis of motors and generators of all sizes
Rotating electrical machines
Linear machines
Actuators
Power transformers
Railway traction machines and drives
Variable speed drives
Machines and drives for electrically powered vehicles
Industrial and non-industrial applications and processes
Current Special Issue. Call for papers:
Progress in Electric Machines, Power Converters and their Control for Wave Energy Generation - https://digital-library.theiet.org/files/IET_EPA_CFP_PEMPCCWEG.pdf