中空聚合物微球填充复合泡沫的局部放电特性

IF 4.9 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
High Voltage Pub Date : 2024-12-08 DOI:10.1049/hve2.12505
Le Li, Shuo Tan, Yunpeng Liu, Haoyi Li, Kezhi Xu, Guancheng Zhen, Xiaoxuan Yin, Tianfang Zhao, Wenhua Wu, Lei Yang
{"title":"中空聚合物微球填充复合泡沫的局部放电特性","authors":"Le Li,&nbsp;Shuo Tan,&nbsp;Yunpeng Liu,&nbsp;Haoyi Li,&nbsp;Kezhi Xu,&nbsp;Guancheng Zhen,&nbsp;Xiaoxuan Yin,&nbsp;Tianfang Zhao,&nbsp;Wenhua Wu,&nbsp;Lei Yang","doi":"10.1049/hve2.12505","DOIUrl":null,"url":null,"abstract":"<p>Syntactic foam materials, due to their advantages of low densities, low water absorption, and high dielectric strengths, have significant application potential in the cores of post insulators. However, because of a large number of microbubble structures within the syntactic foam, it might decrease the partial discharge inception voltage. It is necessary to investigate the partial discharge characteristics of the foam to assess the feasibility of its internal insulation application. In this study, the syntactic foam samples with four different microsphere contents (0%–2%) were prepared, and the physical structures of the materials were characterised by using Fourier transform infrared spectroscopy, scanning electron microscopy, and three-dimensional computed tomography. Subsequently, finite element simulations of the electric field were performed to analyse the influence of the microsphere content and distribution on the internal electric field of the syntactic foam. The results suggested that both the microsphere content and distribution affected the partial discharge activity. When the microsphere content was low, the doping of microspheres essentially meant that more air gap defects were present, leading to a decrease in the partial discharge performance. However, when the microsphere content was high, the microspheres were distributed in a dense and orderly manner, improving the field concentration phenomenon and hence inhibiting the partial discharge to a certain extent. In conclusion, the findings of this study provide a data reference and theoretical support for the application of syntactic foam in the cores of composite post insulators.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"9 6","pages":"1322-1335"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12505","citationCount":"0","resultStr":"{\"title\":\"Partial discharge characteristics of syntactic foam filled with hollow polymer microspheres\",\"authors\":\"Le Li,&nbsp;Shuo Tan,&nbsp;Yunpeng Liu,&nbsp;Haoyi Li,&nbsp;Kezhi Xu,&nbsp;Guancheng Zhen,&nbsp;Xiaoxuan Yin,&nbsp;Tianfang Zhao,&nbsp;Wenhua Wu,&nbsp;Lei Yang\",\"doi\":\"10.1049/hve2.12505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Syntactic foam materials, due to their advantages of low densities, low water absorption, and high dielectric strengths, have significant application potential in the cores of post insulators. However, because of a large number of microbubble structures within the syntactic foam, it might decrease the partial discharge inception voltage. It is necessary to investigate the partial discharge characteristics of the foam to assess the feasibility of its internal insulation application. In this study, the syntactic foam samples with four different microsphere contents (0%–2%) were prepared, and the physical structures of the materials were characterised by using Fourier transform infrared spectroscopy, scanning electron microscopy, and three-dimensional computed tomography. Subsequently, finite element simulations of the electric field were performed to analyse the influence of the microsphere content and distribution on the internal electric field of the syntactic foam. The results suggested that both the microsphere content and distribution affected the partial discharge activity. When the microsphere content was low, the doping of microspheres essentially meant that more air gap defects were present, leading to a decrease in the partial discharge performance. However, when the microsphere content was high, the microspheres were distributed in a dense and orderly manner, improving the field concentration phenomenon and hence inhibiting the partial discharge to a certain extent. In conclusion, the findings of this study provide a data reference and theoretical support for the application of syntactic foam in the cores of composite post insulators.</p>\",\"PeriodicalId\":48649,\"journal\":{\"name\":\"High Voltage\",\"volume\":\"9 6\",\"pages\":\"1322-1335\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12505\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Voltage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12505\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12505","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

复合泡沫材料具有低密度、低吸水性、高介电强度等优点,在柱式绝缘子芯材中具有重要的应用潜力。但由于复合泡沫中存在大量的微泡结构,可能会降低局部放电起始电压。为了评价泡沫材料内保温的可行性,有必要对其局部放电特性进行研究。本研究制备了四种不同微球含量(0% ~ 2%)的复合泡沫样品,并利用傅里叶变换红外光谱、扫描电镜和三维计算机断层扫描对材料的物理结构进行了表征。随后,进行了电场有限元模拟,分析了微球含量和分布对复合泡沫内部电场的影响。结果表明,微球的含量和分布对局部放电活性均有影响。当微球含量较低时,微球的掺杂本质上意味着存在更多的气隙缺陷,导致局部放电性能下降。而当微球含量较高时,微球分布致密有序,改善了电场集中现象,在一定程度上抑制了局部放电。综上所述,本研究结果为复合柱式绝缘子芯中复合泡沫材料的应用提供了数据参考和理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Partial discharge characteristics of syntactic foam filled with hollow polymer microspheres

Partial discharge characteristics of syntactic foam filled with hollow polymer microspheres

Syntactic foam materials, due to their advantages of low densities, low water absorption, and high dielectric strengths, have significant application potential in the cores of post insulators. However, because of a large number of microbubble structures within the syntactic foam, it might decrease the partial discharge inception voltage. It is necessary to investigate the partial discharge characteristics of the foam to assess the feasibility of its internal insulation application. In this study, the syntactic foam samples with four different microsphere contents (0%–2%) were prepared, and the physical structures of the materials were characterised by using Fourier transform infrared spectroscopy, scanning electron microscopy, and three-dimensional computed tomography. Subsequently, finite element simulations of the electric field were performed to analyse the influence of the microsphere content and distribution on the internal electric field of the syntactic foam. The results suggested that both the microsphere content and distribution affected the partial discharge activity. When the microsphere content was low, the doping of microspheres essentially meant that more air gap defects were present, leading to a decrease in the partial discharge performance. However, when the microsphere content was high, the microspheres were distributed in a dense and orderly manner, improving the field concentration phenomenon and hence inhibiting the partial discharge to a certain extent. In conclusion, the findings of this study provide a data reference and theoretical support for the application of syntactic foam in the cores of composite post insulators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Voltage
High Voltage Energy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍: High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include: Electrical Insulation ● Outdoor, indoor, solid, liquid and gas insulation ● Transient voltages and overvoltage protection ● Nano-dielectrics and new insulation materials ● Condition monitoring and maintenance Discharge and plasmas, pulsed power ● Electrical discharge, plasma generation and applications ● Interactions of plasma with surfaces ● Pulsed power science and technology High-field effects ● Computation, measurements of Intensive Electromagnetic Field ● Electromagnetic compatibility ● Biomedical effects ● Environmental effects and protection High Voltage Engineering ● Design problems, testing and measuring techniques ● Equipment development and asset management ● Smart Grid, live line working ● AC/DC power electronics ● UHV power transmission Special Issues. Call for papers: Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信