Robertson模型的多参数奇异摄动分析

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Lukas Baumgartner, Peter Szmolyan
{"title":"Robertson模型的多参数奇异摄动分析","authors":"Lukas Baumgartner,&nbsp;Peter Szmolyan","doi":"10.1111/sapm.70020","DOIUrl":null,"url":null,"abstract":"<p>The Robertson model describing a chemical reaction involving three reactants is one of the classical examples of stiffness in ODEs. The stiffness is caused by the occurrence of three reaction rates <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>k</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>k</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n </mrow>\n <annotation>${k}_{1},{k}_{2},$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>k</mi>\n <mn>3</mn>\n </msub>\n <mo>,</mo>\n </mrow>\n <annotation>${k}_{3},$</annotation>\n </semantics></math> with largely differing orders of magnitude, acting as parameters. The model has been widely used as a numerical test problem. Surprisingly, no asymptotic analysis of this multiscale problem seems to exist. In this paper, we provide a full asymptotic analysis of the Robertson model under the assumption <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>k</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>k</mi>\n <mn>3</mn>\n </msub>\n <mo>≪</mo>\n <msub>\n <mi>k</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$k_1, k_3 \\ll k_2$</annotation>\n </semantics></math>. We rewrite the equations as a two-parameter singular perturbation problem in the rescaled small parameters <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>ε</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>ε</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>:</mo>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>k</mi>\n <mn>1</mn>\n </msub>\n <mo>/</mo>\n <msub>\n <mi>k</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>k</mi>\n <mn>3</mn>\n </msub>\n <mo>/</mo>\n <msub>\n <mi>k</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$(\\varepsilon _1,\\varepsilon _2):=(k_1/k_2,k_3/k_2)$</annotation>\n </semantics></math>, which we then analyze using geometric singular perturbation theory (GSPT). To deal with the multiparameter singular structure, we perform blowups in parameter- and variable space. We identify four distinct regimes in a neighborhood of the singular limit <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>ε</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>ε</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$(\\varepsilon _1,\\varepsilon _2)= (0,0)$</annotation>\n </semantics></math>. Within these four regimes, we use GSPT and additional blowups to analyze the dynamics and the structure of solutions. Our asymptotic results are in excellent qualitative and quantitative agreement with the numerics.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70020","citationCount":"0","resultStr":"{\"title\":\"A Multiparameter Singular Perturbation Analysis of the Robertson Model\",\"authors\":\"Lukas Baumgartner,&nbsp;Peter Szmolyan\",\"doi\":\"10.1111/sapm.70020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Robertson model describing a chemical reaction involving three reactants is one of the classical examples of stiffness in ODEs. The stiffness is caused by the occurrence of three reaction rates <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>k</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>k</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>,</mo>\\n </mrow>\\n <annotation>${k}_{1},{k}_{2},$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>k</mi>\\n <mn>3</mn>\\n </msub>\\n <mo>,</mo>\\n </mrow>\\n <annotation>${k}_{3},$</annotation>\\n </semantics></math> with largely differing orders of magnitude, acting as parameters. The model has been widely used as a numerical test problem. Surprisingly, no asymptotic analysis of this multiscale problem seems to exist. In this paper, we provide a full asymptotic analysis of the Robertson model under the assumption <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>k</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>k</mi>\\n <mn>3</mn>\\n </msub>\\n <mo>≪</mo>\\n <msub>\\n <mi>k</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$k_1, k_3 \\\\ll k_2$</annotation>\\n </semantics></math>. We rewrite the equations as a two-parameter singular perturbation problem in the rescaled small parameters <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>ε</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>ε</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>:</mo>\\n <mo>=</mo>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>k</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>/</mo>\\n <msub>\\n <mi>k</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>k</mi>\\n <mn>3</mn>\\n </msub>\\n <mo>/</mo>\\n <msub>\\n <mi>k</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$(\\\\varepsilon _1,\\\\varepsilon _2):=(k_1/k_2,k_3/k_2)$</annotation>\\n </semantics></math>, which we then analyze using geometric singular perturbation theory (GSPT). To deal with the multiparameter singular structure, we perform blowups in parameter- and variable space. We identify four distinct regimes in a neighborhood of the singular limit <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>ε</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>ε</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mrow>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>0</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$(\\\\varepsilon _1,\\\\varepsilon _2)= (0,0)$</annotation>\\n </semantics></math>. Within these four regimes, we use GSPT and additional blowups to analyze the dynamics and the structure of solutions. Our asymptotic results are in excellent qualitative and quantitative agreement with the numerics.</p>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"154 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70020\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70020\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70020","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

描述涉及三种反应物的化学反应的Robertson模型是ode中刚度的经典例子之一。刚度是由三种反应速率k1, k2,${k}_{1},{k}_{2},$和k3,$ {k}_{3},$的数量级差别很大,作为参数。该模型已被广泛应用于数值测试问题。令人惊讶的是,这个多尺度问题似乎不存在渐近分析。在本文中,我们在以下假设下对Robertson模型进行了全面的渐近分析:k1, k3≪k2 $k_1,K_3 \ll k_2$。我们将方程改写为小参数(ε 1, ε 2)下的双参数奇异摄动问题:= (k1 / k2)k3 / k2)$ (\varepsilon _1,\varepsilon _2):=(k_1/k_2,k_3/k_2)$,然后用几何奇异摄动理论(GSPT)对其进行分析。为了处理多参数奇异结构,我们在参数和变量空间中进行了放大。我们在奇异极限(ε 1,ε 2)= (0,0)$ (\varepsilon _1,\varepsilon _2)=(0,0)$。在这四种机制中,我们使用GSPT和额外的放大来分析解决方案的动力学和结构。我们的渐近结果与数值结果在定性和定量上都非常一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Multiparameter Singular Perturbation Analysis of the Robertson Model

A Multiparameter Singular Perturbation Analysis of the Robertson Model

The Robertson model describing a chemical reaction involving three reactants is one of the classical examples of stiffness in ODEs. The stiffness is caused by the occurrence of three reaction rates k 1 , k 2 , ${k}_{1},{k}_{2},$ and k 3 , ${k}_{3},$ with largely differing orders of magnitude, acting as parameters. The model has been widely used as a numerical test problem. Surprisingly, no asymptotic analysis of this multiscale problem seems to exist. In this paper, we provide a full asymptotic analysis of the Robertson model under the assumption k 1 , k 3 k 2 $k_1, k_3 \ll k_2$ . We rewrite the equations as a two-parameter singular perturbation problem in the rescaled small parameters ( ε 1 , ε 2 ) : = ( k 1 / k 2 , k 3 / k 2 ) $(\varepsilon _1,\varepsilon _2):=(k_1/k_2,k_3/k_2)$ , which we then analyze using geometric singular perturbation theory (GSPT). To deal with the multiparameter singular structure, we perform blowups in parameter- and variable space. We identify four distinct regimes in a neighborhood of the singular limit ( ε 1 , ε 2 ) = ( 0 , 0 ) $(\varepsilon _1,\varepsilon _2)= (0,0)$ . Within these four regimes, we use GSPT and additional blowups to analyze the dynamics and the structure of solutions. Our asymptotic results are in excellent qualitative and quantitative agreement with the numerics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信