亚波长倏逝波的复杂波段结构

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Yannick De Bruijn, Erik Orvehed Hiltunen
{"title":"亚波长倏逝波的复杂波段结构","authors":"Yannick De Bruijn,&nbsp;Erik Orvehed Hiltunen","doi":"10.1111/sapm.70022","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We present the mathematical and numerical theory for evanescent waves in subwavelength bandgap materials. We begin in the one-dimensional case, whereby fully explicit formulas for the complex band structure, in terms of the capacitance matrix, are available. As an example, we show that the gap functions can be used to accurately predict the decay rate of the interface mode of a photonic analogue of the Su–Schrieffer–Heeger model. In two dimensions, we derive the bandgap Green's function and characterize the subwavelength gap functions via layer potential techniques. By generalizing existing lattice-summation techniques, we illustrate our results numerically by computing the complex band structure in a variety of settings.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex Band Structure for Subwavelength Evanescent Waves\",\"authors\":\"Yannick De Bruijn,&nbsp;Erik Orvehed Hiltunen\",\"doi\":\"10.1111/sapm.70022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We present the mathematical and numerical theory for evanescent waves in subwavelength bandgap materials. We begin in the one-dimensional case, whereby fully explicit formulas for the complex band structure, in terms of the capacitance matrix, are available. As an example, we show that the gap functions can be used to accurately predict the decay rate of the interface mode of a photonic analogue of the Su–Schrieffer–Heeger model. In two dimensions, we derive the bandgap Green's function and characterize the subwavelength gap functions via layer potential techniques. By generalizing existing lattice-summation techniques, we illustrate our results numerically by computing the complex band structure in a variety of settings.</p></div>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"154 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70022\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70022","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

提出了亚波长带隙材料中倏逝波的数学和数值理论。我们从一维的情况开始,在这种情况下,复杂带结构的完全明确的公式,在电容矩阵方面,是可用的。作为一个例子,我们证明了间隙函数可以用来准确地预测Su-Schrieffer-Heeger模型的光子模拟界面模式的衰减率。在二维空间中,我们推导了带隙格林函数,并通过层势技术表征了亚波长隙函数。通过推广现有的格求和技术,我们通过计算各种设置下的复杂带结构来数值说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex Band Structure for Subwavelength Evanescent Waves

We present the mathematical and numerical theory for evanescent waves in subwavelength bandgap materials. We begin in the one-dimensional case, whereby fully explicit formulas for the complex band structure, in terms of the capacitance matrix, are available. As an example, we show that the gap functions can be used to accurately predict the decay rate of the interface mode of a photonic analogue of the Su–Schrieffer–Heeger model. In two dimensions, we derive the bandgap Green's function and characterize the subwavelength gap functions via layer potential techniques. By generalizing existing lattice-summation techniques, we illustrate our results numerically by computing the complex band structure in a variety of settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信