风电储能电力系统频率安全需求与协调控制策略

IF 2.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiangyu Zhang, Zijian Shao, Yuan Fu, Yabo Cao
{"title":"风电储能电力系统频率安全需求与协调控制策略","authors":"Xiangyu Zhang,&nbsp;Zijian Shao,&nbsp;Yuan Fu,&nbsp;Yabo Cao","doi":"10.1049/gtd2.70018","DOIUrl":null,"url":null,"abstract":"<p>According to the constraints of frequency safety indices, evaluating the inertia and primary frequency regulation demand, rationally utilizing the energy reserve provided by wind turbines and energy storage devices to ensure the safety of the system frequency response, is the key to improve the stability of large-scale new energy power systems. First, frequency response characteristics and frequency regulation safety indicators required by new energy generation systems were analyzed. Second, the frequency dynamic response model of the system with wind power and energy storage was established, and the extreme value time for the virtual inertia response of the system was calculated. Using the extreme time at which the frequency drop is maximum, the virtual inertia time constant of the wind-storage system was evaluated. Additionally, the system inertia and the primary frequency regulation demand were obtained considering the frequency safety indices, and a novel coordinated control strategy for wind power and energy storage to provide the required frequency support was proposed. Finally, a grid-connected wind-storage simulation system was built to verify the superiority of the proposed control strategy. The obtained results indicate that the proposed control scheme flexibly meets the system frequency safety requirements.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.70018","citationCount":"0","resultStr":"{\"title\":\"Frequency safety demand and coordinated control strategy for power system with wind power and energy storage\",\"authors\":\"Xiangyu Zhang,&nbsp;Zijian Shao,&nbsp;Yuan Fu,&nbsp;Yabo Cao\",\"doi\":\"10.1049/gtd2.70018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>According to the constraints of frequency safety indices, evaluating the inertia and primary frequency regulation demand, rationally utilizing the energy reserve provided by wind turbines and energy storage devices to ensure the safety of the system frequency response, is the key to improve the stability of large-scale new energy power systems. First, frequency response characteristics and frequency regulation safety indicators required by new energy generation systems were analyzed. Second, the frequency dynamic response model of the system with wind power and energy storage was established, and the extreme value time for the virtual inertia response of the system was calculated. Using the extreme time at which the frequency drop is maximum, the virtual inertia time constant of the wind-storage system was evaluated. Additionally, the system inertia and the primary frequency regulation demand were obtained considering the frequency safety indices, and a novel coordinated control strategy for wind power and energy storage to provide the required frequency support was proposed. Finally, a grid-connected wind-storage simulation system was built to verify the superiority of the proposed control strategy. The obtained results indicate that the proposed control scheme flexibly meets the system frequency safety requirements.</p>\",\"PeriodicalId\":13261,\"journal\":{\"name\":\"Iet Generation Transmission & Distribution\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.70018\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Generation Transmission & Distribution\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.70018\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.70018","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在频率安全指标约束下,评估惯性和一次调频需求,合理利用风力发电机组和储能装置提供的能量储备,保证系统频率响应的安全性,是提高大型新能源电力系统稳定性的关键。首先,分析了新能源发电系统的频响特性和调频安全指标要求。其次,建立了风电储能系统的频率动态响应模型,计算了系统虚拟惯性响应的极值时间;利用频率降最大的极值时刻,计算了蓄风系统的虚惯性时间常数。在考虑频率安全指标的基础上,得到了系统惯量和一次调频需求,并提出了一种新的风电和储能协同控制策略,以提供所需的频率支持。最后,建立了一个并网风库仿真系统,验证了所提控制策略的优越性。仿真结果表明,所提出的控制方案能够灵活地满足系统频率安全要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Frequency safety demand and coordinated control strategy for power system with wind power and energy storage

Frequency safety demand and coordinated control strategy for power system with wind power and energy storage

According to the constraints of frequency safety indices, evaluating the inertia and primary frequency regulation demand, rationally utilizing the energy reserve provided by wind turbines and energy storage devices to ensure the safety of the system frequency response, is the key to improve the stability of large-scale new energy power systems. First, frequency response characteristics and frequency regulation safety indicators required by new energy generation systems were analyzed. Second, the frequency dynamic response model of the system with wind power and energy storage was established, and the extreme value time for the virtual inertia response of the system was calculated. Using the extreme time at which the frequency drop is maximum, the virtual inertia time constant of the wind-storage system was evaluated. Additionally, the system inertia and the primary frequency regulation demand were obtained considering the frequency safety indices, and a novel coordinated control strategy for wind power and energy storage to provide the required frequency support was proposed. Finally, a grid-connected wind-storage simulation system was built to verify the superiority of the proposed control strategy. The obtained results indicate that the proposed control scheme flexibly meets the system frequency safety requirements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信