加勒比地区能源系统的非化石化:强调电子燃料进口、电网整合和加速转型

IF 2.6 4区 工程技术 Q3 ENERGY & FUELS
Ayobami S. Oyewo, Alejandro Kunkar, Dmitrii Bogdanov, Christian Breyer
{"title":"加勒比地区能源系统的非化石化:强调电子燃料进口、电网整合和加速转型","authors":"Ayobami S. Oyewo,&nbsp;Alejandro Kunkar,&nbsp;Dmitrii Bogdanov,&nbsp;Christian Breyer","doi":"10.1049/rpg2.13173","DOIUrl":null,"url":null,"abstract":"<p>Transitioning to renewables is critical to address the Caribbean's vulnerability to imported fossil fuel price volatility and concerns about climate change. This study presents a first-of-its-kind comprehensive analysis of 17 illustrative pathways varying the impact of e-fuel imports, grid interconnections and an accelerated energy transition towards the Caribbean's carbon neutrality by 2050. The research method is based on techno-economic principles for designing a cost-optimal energy system. An optimisation tool is used, the LUT Energy System Transition Model, to analyse the various pathways. The study finds that high uptake of renewables in Caribbean energy systems significantly lowers costs and enhances reliability, crucial for building competitive and resilient economies. Renewable energy dominated pathways show 7–24% lower cumulative costs compared to alternatives, with grid integration reducing costs by 1–10%. Accelerated transition pathways incur 3–12% higher costs than complete defossilisation by 2050. Solar photovoltaics, wind power, batteries, and electrolysers are pivotal for achieving carbon neutrality by 2050. Importing e-fuels reduces system costs by 7–16% and supports local resource use. Offshore renewable energy overcome land limitations, driving sustainable development and a vibrant blue economy. High electrification levels with renewable energy, sector coupling, and Power-to-X solutions enhance system efficiency and flexibility. Given the dominance of solar photovoltaics, the Caribbean's energy transition could be more appropriately called a ‘Solar-to-X Economy’. This research contributes to the international perspective on sustainable energy transition for islands.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 S1","pages":"4650-4678"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13173","citationCount":"0","resultStr":"{\"title\":\"Defossilising Caribbean's energy system: Highlighting on e-fuel imports, grid integration, and accelerated transition\",\"authors\":\"Ayobami S. Oyewo,&nbsp;Alejandro Kunkar,&nbsp;Dmitrii Bogdanov,&nbsp;Christian Breyer\",\"doi\":\"10.1049/rpg2.13173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Transitioning to renewables is critical to address the Caribbean's vulnerability to imported fossil fuel price volatility and concerns about climate change. This study presents a first-of-its-kind comprehensive analysis of 17 illustrative pathways varying the impact of e-fuel imports, grid interconnections and an accelerated energy transition towards the Caribbean's carbon neutrality by 2050. The research method is based on techno-economic principles for designing a cost-optimal energy system. An optimisation tool is used, the LUT Energy System Transition Model, to analyse the various pathways. The study finds that high uptake of renewables in Caribbean energy systems significantly lowers costs and enhances reliability, crucial for building competitive and resilient economies. Renewable energy dominated pathways show 7–24% lower cumulative costs compared to alternatives, with grid integration reducing costs by 1–10%. Accelerated transition pathways incur 3–12% higher costs than complete defossilisation by 2050. Solar photovoltaics, wind power, batteries, and electrolysers are pivotal for achieving carbon neutrality by 2050. Importing e-fuels reduces system costs by 7–16% and supports local resource use. Offshore renewable energy overcome land limitations, driving sustainable development and a vibrant blue economy. High electrification levels with renewable energy, sector coupling, and Power-to-X solutions enhance system efficiency and flexibility. Given the dominance of solar photovoltaics, the Caribbean's energy transition could be more appropriately called a ‘Solar-to-X Economy’. This research contributes to the international perspective on sustainable energy transition for islands.</p>\",\"PeriodicalId\":55000,\"journal\":{\"name\":\"IET Renewable Power Generation\",\"volume\":\"18 S1\",\"pages\":\"4650-4678\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13173\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Renewable Power Generation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13173\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13173","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

向可再生能源转型对于解决加勒比地区易受进口化石燃料价格波动影响的问题和对气候变化的担忧至关重要。本研究首次对17条说明性路径进行了全面分析,这些路径影响了电子燃料进口、电网互联和加速能源转型到2050年实现加勒比地区碳中和的影响。该研究方法基于设计成本最优能源系统的技术经济原理。使用优化工具,LUT能源系统转换模型,来分析各种途径。该研究发现,加勒比地区能源系统对可再生能源的高度利用显著降低了成本并提高了可靠性,这对于建设具有竞争力和弹性的经济体至关重要。与替代能源相比,可再生能源主导的路径显示出7-24%的累积成本降低,电网整合降低了1-10%的成本。加速转型的成本要比到2050年完全去化石化的成本高3-12%。太阳能光伏、风能、电池和电解槽是到2050年实现碳中和的关键。进口电子燃料可使系统成本降低7-16%,并支持当地资源利用。海上可再生能源克服了土地限制,推动了可持续发展和充满活力的蓝色经济。可再生能源、部门耦合和Power-to-X解决方案的高电气化水平提高了系统效率和灵活性。鉴于太阳能光伏发电的主导地位,加勒比地区的能源转型可以更恰当地称为“太阳能到x经济”。这项研究有助于建立岛屿可持续能源转型的国际视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Defossilising Caribbean's energy system: Highlighting on e-fuel imports, grid integration, and accelerated transition

Defossilising Caribbean's energy system: Highlighting on e-fuel imports, grid integration, and accelerated transition

Transitioning to renewables is critical to address the Caribbean's vulnerability to imported fossil fuel price volatility and concerns about climate change. This study presents a first-of-its-kind comprehensive analysis of 17 illustrative pathways varying the impact of e-fuel imports, grid interconnections and an accelerated energy transition towards the Caribbean's carbon neutrality by 2050. The research method is based on techno-economic principles for designing a cost-optimal energy system. An optimisation tool is used, the LUT Energy System Transition Model, to analyse the various pathways. The study finds that high uptake of renewables in Caribbean energy systems significantly lowers costs and enhances reliability, crucial for building competitive and resilient economies. Renewable energy dominated pathways show 7–24% lower cumulative costs compared to alternatives, with grid integration reducing costs by 1–10%. Accelerated transition pathways incur 3–12% higher costs than complete defossilisation by 2050. Solar photovoltaics, wind power, batteries, and electrolysers are pivotal for achieving carbon neutrality by 2050. Importing e-fuels reduces system costs by 7–16% and supports local resource use. Offshore renewable energy overcome land limitations, driving sustainable development and a vibrant blue economy. High electrification levels with renewable energy, sector coupling, and Power-to-X solutions enhance system efficiency and flexibility. Given the dominance of solar photovoltaics, the Caribbean's energy transition could be more appropriately called a ‘Solar-to-X Economy’. This research contributes to the international perspective on sustainable energy transition for islands.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Renewable Power Generation
IET Renewable Power Generation 工程技术-工程:电子与电气
CiteScore
6.80
自引率
11.50%
发文量
268
审稿时长
6.6 months
期刊介绍: IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal. Specific technology areas covered by the journal include: Wind power technology and systems Photovoltaics Solar thermal power generation Geothermal energy Fuel cells Wave power Marine current energy Biomass conversion and power generation What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small. The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged. The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced. Current Special Issue. Call for papers: Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信