变分框架下的非均匀降尺度数据同化算法

IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Yueqi Zhao, Zhongjie He, Xiachuan Fu, Lihua Hou
{"title":"变分框架下的非均匀降尺度数据同化算法","authors":"Yueqi Zhao,&nbsp;Zhongjie He,&nbsp;Xiachuan Fu,&nbsp;Lihua Hou","doi":"10.1016/j.ocemod.2025.102508","DOIUrl":null,"url":null,"abstract":"<div><div>To improve the performance of the multiscale assimilation algorithm, we propose a non-uniform downscaling (NUD) data assimilation algorithm in a variational framework based on the relationship between the space structure of the scale decomposition and the space distribution characteristics. The algorithm differs from the traditional uniform downscaling (UD) algorithm in that it enables the distribution of space grid points to be sparse in large scale regions and dense in small scale regions. The non-uniform scale decomposition can better control the propagation range of the observation information. Experiments show that the NUD can reduce the background error by about 5 % relative to the UD. The spatial distribution characteristics of the analysis field obtained by the NUD are also more similar to the true field. In addition, the forecast results show that the non-uniform scale decomposition assimilation algorithm with model integration can produce a stable positive impact and effectively improve the forecast capability for small and medium scale phenomena.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"194 ","pages":"Article 102508"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-uniform downscaling data assimilation algorithm in variational framework\",\"authors\":\"Yueqi Zhao,&nbsp;Zhongjie He,&nbsp;Xiachuan Fu,&nbsp;Lihua Hou\",\"doi\":\"10.1016/j.ocemod.2025.102508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To improve the performance of the multiscale assimilation algorithm, we propose a non-uniform downscaling (NUD) data assimilation algorithm in a variational framework based on the relationship between the space structure of the scale decomposition and the space distribution characteristics. The algorithm differs from the traditional uniform downscaling (UD) algorithm in that it enables the distribution of space grid points to be sparse in large scale regions and dense in small scale regions. The non-uniform scale decomposition can better control the propagation range of the observation information. Experiments show that the NUD can reduce the background error by about 5 % relative to the UD. The spatial distribution characteristics of the analysis field obtained by the NUD are also more similar to the true field. In addition, the forecast results show that the non-uniform scale decomposition assimilation algorithm with model integration can produce a stable positive impact and effectively improve the forecast capability for small and medium scale phenomena.</div></div>\",\"PeriodicalId\":19457,\"journal\":{\"name\":\"Ocean Modelling\",\"volume\":\"194 \",\"pages\":\"Article 102508\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Modelling\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1463500325000113\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500325000113","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

为了提高多尺度同化算法的性能,基于尺度分解的空间结构与空间分布特征的关系,提出了一种变分框架下的非均匀降尺度(NUD)数据同化算法。该算法与传统的均匀降尺度(UD)算法的不同之处在于,它使空间网格点的分布在大尺度区域是稀疏的,在小尺度区域是密集的。非均匀尺度分解可以更好地控制观测信息的传播范围。实验表明,该方法可以将背景误差降低5%左右。NUD得到的分析场的空间分布特征也更接近真实场。此外,预报结果表明,结合模式积分的非均匀尺度分解同化算法能够产生稳定的正向影响,有效提高对中小尺度现象的预报能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-uniform downscaling data assimilation algorithm in variational framework
To improve the performance of the multiscale assimilation algorithm, we propose a non-uniform downscaling (NUD) data assimilation algorithm in a variational framework based on the relationship between the space structure of the scale decomposition and the space distribution characteristics. The algorithm differs from the traditional uniform downscaling (UD) algorithm in that it enables the distribution of space grid points to be sparse in large scale regions and dense in small scale regions. The non-uniform scale decomposition can better control the propagation range of the observation information. Experiments show that the NUD can reduce the background error by about 5 % relative to the UD. The spatial distribution characteristics of the analysis field obtained by the NUD are also more similar to the true field. In addition, the forecast results show that the non-uniform scale decomposition assimilation algorithm with model integration can produce a stable positive impact and effectively improve the forecast capability for small and medium scale phenomena.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ocean Modelling
Ocean Modelling 地学-海洋学
CiteScore
5.50
自引率
9.40%
发文量
86
审稿时长
19.6 weeks
期刊介绍: The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信