非平稳方差中的动态相互依赖建模及其在碳市场中的应用

IF 1.9 3区 经济学 Q2 ECONOMICS
Susana Campos-Martins , Cristina Amado
{"title":"非平稳方差中的动态相互依赖建模及其在碳市场中的应用","authors":"Susana Campos-Martins ,&nbsp;Cristina Amado","doi":"10.1016/j.jedc.2025.105062","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we propose a multivariate generalisation of the multiplicative decomposition of the volatility within the class of conditional correlation GARCH models. The GARCH variance equations are multiplicatively decomposed into a deterministic nonstationary component describing the long-run movements in volatility and a short-run dynamic component allowing for volatility interactions across markets or assets. The conditional correlations are assumed to be time-invariant in its simplest form or generalised into a flexible dynamic parameterisation. Parameters of the model are estimated equation-by-equation by maximum likelihood applying the maximisation by parts algorithm to the variance equations, and thereafter to the structure of conditional correlations. An empirical application using carbon markets data illustrates the usefulness of the model. Our results suggest that, after modelling the variance equations accordingly, we find evidence that the transmission mechanism of shocks is supported by the presence of dynamic interdependence in variances robust to nonstationarity.</div></div>","PeriodicalId":48314,"journal":{"name":"Journal of Economic Dynamics & Control","volume":"173 ","pages":"Article 105062"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling dynamic interdependence in nonstationary variances with an application to carbon markets\",\"authors\":\"Susana Campos-Martins ,&nbsp;Cristina Amado\",\"doi\":\"10.1016/j.jedc.2025.105062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we propose a multivariate generalisation of the multiplicative decomposition of the volatility within the class of conditional correlation GARCH models. The GARCH variance equations are multiplicatively decomposed into a deterministic nonstationary component describing the long-run movements in volatility and a short-run dynamic component allowing for volatility interactions across markets or assets. The conditional correlations are assumed to be time-invariant in its simplest form or generalised into a flexible dynamic parameterisation. Parameters of the model are estimated equation-by-equation by maximum likelihood applying the maximisation by parts algorithm to the variance equations, and thereafter to the structure of conditional correlations. An empirical application using carbon markets data illustrates the usefulness of the model. Our results suggest that, after modelling the variance equations accordingly, we find evidence that the transmission mechanism of shocks is supported by the presence of dynamic interdependence in variances robust to nonstationarity.</div></div>\",\"PeriodicalId\":48314,\"journal\":{\"name\":\"Journal of Economic Dynamics & Control\",\"volume\":\"173 \",\"pages\":\"Article 105062\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Economic Dynamics & Control\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165188925000284\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economic Dynamics & Control","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165188925000284","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了条件相关GARCH模型中波动性乘式分解的多元推广方法。GARCH方差方程被乘法分解为描述波动性长期运动的确定性非平稳成分和允许市场或资产之间的波动性相互作用的短期动态成分。假设条件相关性在其最简单的形式下是时不变的,或者将其推广为灵活的动态参数化。模型的参数通过最大似然逐个方程估计,将部分最大化算法应用于方差方程,然后应用于条件相关的结构。利用碳市场数据的实证应用说明了该模型的有效性。我们的研究结果表明,在对方差方程进行相应建模后,我们发现证据表明,冲击的传递机制是由对非平稳性具有鲁棒性的方差中存在的动态相互依赖所支持的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling dynamic interdependence in nonstationary variances with an application to carbon markets
In this paper we propose a multivariate generalisation of the multiplicative decomposition of the volatility within the class of conditional correlation GARCH models. The GARCH variance equations are multiplicatively decomposed into a deterministic nonstationary component describing the long-run movements in volatility and a short-run dynamic component allowing for volatility interactions across markets or assets. The conditional correlations are assumed to be time-invariant in its simplest form or generalised into a flexible dynamic parameterisation. Parameters of the model are estimated equation-by-equation by maximum likelihood applying the maximisation by parts algorithm to the variance equations, and thereafter to the structure of conditional correlations. An empirical application using carbon markets data illustrates the usefulness of the model. Our results suggest that, after modelling the variance equations accordingly, we find evidence that the transmission mechanism of shocks is supported by the presence of dynamic interdependence in variances robust to nonstationarity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
199
期刊介绍: The journal provides an outlet for publication of research concerning all theoretical and empirical aspects of economic dynamics and control as well as the development and use of computational methods in economics and finance. Contributions regarding computational methods may include, but are not restricted to, artificial intelligence, databases, decision support systems, genetic algorithms, modelling languages, neural networks, numerical algorithms for optimization, control and equilibria, parallel computing and qualitative reasoning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信