露天矿边坡失稳机理:从物理和数值模拟看

IF 11.7 1区 工程技术 Q1 MINING & MINERAL PROCESSING
Guanghe Li , Zihuan Hu , Dong Wang , Laigui Wang , Yanting Wang , Lichun Zhao , Hongjun Jia , Kun Fang
{"title":"露天矿边坡失稳机理:从物理和数值模拟看","authors":"Guanghe Li ,&nbsp;Zihuan Hu ,&nbsp;Dong Wang ,&nbsp;Laigui Wang ,&nbsp;Yanting Wang ,&nbsp;Lichun Zhao ,&nbsp;Hongjun Jia ,&nbsp;Kun Fang","doi":"10.1016/j.ijmst.2024.10.003","DOIUrl":null,"url":null,"abstract":"<div><div>The stability of open-pit mine slopes is crucial for safe and efficient mining operations. However, the presence of weak interlayers poses significant challenges in maintaining the stability of slopes. To explore the impact of the rock arching effect on slopes during excavation, understand the deformation zones and evaluation stages in such environments, and analyze the formation and characteristics of cracks, this study investigated the instability mechanism of open-pit mine slopes with weak interlayers through physical and numerical modeling. Focusing on the Zaharnur open-pit coal mine in China as a prototype, a sophisticated physical model test employing particle image velocimetry and Brillouin optical frequency domain analysis was conducted to comprehensively analyze the displacement and strain variation characteristics of open-pit mine slopes. The displacement, strain, stress redistribution, and failure processes of slopes under excavation were comprehensively analyzed through physical and numerical modeling. The results showed that the slope model exhibited a strain pattern in which the strain incrementally increased from its center toward the edges, and the landslide thrust was converted into an internal force along the arch axis and transmitted to the supports. The concept of the rock arching effect specific to soft rocks was proposed, shedding new light on an important phenomenon specific to open-pit slopes with weak interlayers. Based on its deformation characteristics, the slope could be divided into three areas: The excavation influence area, the crack area and the failure area. In addition, the ratios of the height and width of the outermost cracks to the excavation width fluctuated in the ranges of 0.36–0.49 and 0.72–1.00, respectively. These findings contribute to a better understanding of the instability mechanisms in open-pit mine slopes with weak interlayers and provide valuable guidelines for safe mining practices.</div></div>","PeriodicalId":48625,"journal":{"name":"International Journal of Mining Science and Technology","volume":"34 11","pages":"Pages 1509-1528"},"PeriodicalIF":11.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instability mechanisms of slope in open-pit coal mines: From physical and numerical modeling\",\"authors\":\"Guanghe Li ,&nbsp;Zihuan Hu ,&nbsp;Dong Wang ,&nbsp;Laigui Wang ,&nbsp;Yanting Wang ,&nbsp;Lichun Zhao ,&nbsp;Hongjun Jia ,&nbsp;Kun Fang\",\"doi\":\"10.1016/j.ijmst.2024.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The stability of open-pit mine slopes is crucial for safe and efficient mining operations. However, the presence of weak interlayers poses significant challenges in maintaining the stability of slopes. To explore the impact of the rock arching effect on slopes during excavation, understand the deformation zones and evaluation stages in such environments, and analyze the formation and characteristics of cracks, this study investigated the instability mechanism of open-pit mine slopes with weak interlayers through physical and numerical modeling. Focusing on the Zaharnur open-pit coal mine in China as a prototype, a sophisticated physical model test employing particle image velocimetry and Brillouin optical frequency domain analysis was conducted to comprehensively analyze the displacement and strain variation characteristics of open-pit mine slopes. The displacement, strain, stress redistribution, and failure processes of slopes under excavation were comprehensively analyzed through physical and numerical modeling. The results showed that the slope model exhibited a strain pattern in which the strain incrementally increased from its center toward the edges, and the landslide thrust was converted into an internal force along the arch axis and transmitted to the supports. The concept of the rock arching effect specific to soft rocks was proposed, shedding new light on an important phenomenon specific to open-pit slopes with weak interlayers. Based on its deformation characteristics, the slope could be divided into three areas: The excavation influence area, the crack area and the failure area. In addition, the ratios of the height and width of the outermost cracks to the excavation width fluctuated in the ranges of 0.36–0.49 and 0.72–1.00, respectively. These findings contribute to a better understanding of the instability mechanisms in open-pit mine slopes with weak interlayers and provide valuable guidelines for safe mining practices.</div></div>\",\"PeriodicalId\":48625,\"journal\":{\"name\":\"International Journal of Mining Science and Technology\",\"volume\":\"34 11\",\"pages\":\"Pages 1509-1528\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mining Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095268624001514\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095268624001514","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

摘要

露天矿边坡的稳定性对矿山安全高效开采至关重要。然而,弱夹层的存在给边坡的稳定性带来了巨大的挑战。为探索开挖过程中岩石拱拱效应对边坡的影响,了解这种环境下的变形区域和评价阶段,分析裂缝的形成和特征,通过物理和数值模拟研究了软弱夹层露天矿边坡的失稳机理。以中国扎哈尔努尔露天矿为原型,采用粒子图像测速法和布里渊光频域分析技术进行了复杂的物理模型试验,全面分析了露天矿边坡位移应变变化特征。通过物理和数值模拟综合分析了开挖作用下边坡的位移、应变、应力重分布和破坏过程。结果表明:边坡模型呈现出由中心向边缘逐渐增大的应变模式,滑坡推力沿拱轴方向转化为内力并传递给支护;提出了软岩特有的岩拱效应的概念,对软弱夹层露天矿边坡特有的重要现象有了新的认识。根据边坡的变形特征,将其划分为开挖影响区、裂缝区和破坏区3个区域。最外层裂缝的高度和宽度与开挖宽度的比值分别在0.36 ~ 0.49和0.72 ~ 1.00之间波动。这些发现有助于更好地理解软弱夹层露天矿边坡的失稳机制,并为安全开采提供有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Instability mechanisms of slope in open-pit coal mines: From physical and numerical modeling
The stability of open-pit mine slopes is crucial for safe and efficient mining operations. However, the presence of weak interlayers poses significant challenges in maintaining the stability of slopes. To explore the impact of the rock arching effect on slopes during excavation, understand the deformation zones and evaluation stages in such environments, and analyze the formation and characteristics of cracks, this study investigated the instability mechanism of open-pit mine slopes with weak interlayers through physical and numerical modeling. Focusing on the Zaharnur open-pit coal mine in China as a prototype, a sophisticated physical model test employing particle image velocimetry and Brillouin optical frequency domain analysis was conducted to comprehensively analyze the displacement and strain variation characteristics of open-pit mine slopes. The displacement, strain, stress redistribution, and failure processes of slopes under excavation were comprehensively analyzed through physical and numerical modeling. The results showed that the slope model exhibited a strain pattern in which the strain incrementally increased from its center toward the edges, and the landslide thrust was converted into an internal force along the arch axis and transmitted to the supports. The concept of the rock arching effect specific to soft rocks was proposed, shedding new light on an important phenomenon specific to open-pit slopes with weak interlayers. Based on its deformation characteristics, the slope could be divided into three areas: The excavation influence area, the crack area and the failure area. In addition, the ratios of the height and width of the outermost cracks to the excavation width fluctuated in the ranges of 0.36–0.49 and 0.72–1.00, respectively. These findings contribute to a better understanding of the instability mechanisms in open-pit mine slopes with weak interlayers and provide valuable guidelines for safe mining practices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mining Science and Technology
International Journal of Mining Science and Technology Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
19.10
自引率
11.90%
发文量
2541
审稿时长
44 days
期刊介绍: The International Journal of Mining Science and Technology, founded in 1990 as the Journal of China University of Mining and Technology, is a monthly English-language journal. It publishes original research papers and high-quality reviews that explore the latest advancements in theories, methodologies, and applications within the realm of mining sciences and technologies. The journal serves as an international exchange forum for readers and authors worldwide involved in mining sciences and technologies. All papers undergo a peer-review process and meticulous editing by specialists and authorities, with the entire submission-to-publication process conducted electronically.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信